
Efficient Zero-Knowledge Proof Systems

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth

University College London

Abstract. A proof system can be used by a prover to demonstrate to
one or more verifiers that a statement is true. Proof systems can be
interactive where the prover and verifier exchange many messages, or
non-interactive where the prover sends a single convincing proof to the
verifier. Proof systems are widely used in cryptographic protocols to verify
that a party is following a protocol correctly and is not cheating.
A particular type of proof systems are zero-knowledge proof systems,
where the prover convinces the verifier that the statement is true but
does not leak any other information. Zero-knowledge proofs are useful
when the prover has private data that should not be leaked but needs to
demonstrate a certain fact about this data. The prover may for instance
want want to show it is following a protocol correctly but does not want
to reveal its own input.
In these lecture notes we give an overview of some central techniques
behind the construction of efficient zero-knowledge proofs.

1 Introduction

Imagine a company is trying to assess a candidate for a highly specialized position.
A simple solution would be for them to present her with a task of their choice
and rate her performance. The candidate declines, as the assessment might have
her doing useful work without compensation. She proposes the choice of the task
is left to her, to ensure the company does not unfairly profit from this process.
The company is not convinced; the task may be too easy, or selected to hide the
candidate’s weaknesses.

For the assessment to go forward we need a special set of tasks: on the one
hand they must be hard enough such that only qualified candidates are able to
accomplish them, on the other hand they should not give away anything else
since candidates do not want to function as unpaid workers. In job interviews
this often takes the form of logic puzzles.

In cryptographic protocols, we do not have jobs and candidates; but we often
have situations where we want to demonstrate some property holds or a statement
is true without giving away any other information. Here zero-knowledge proofs
are appropriate tools.

Zero-knowledge proof systems, introduced by Goldwasser, Micali and Rack-
off [GMR85], take place between two parties called prover and verifier. The prover
wants to convince the verifier a certain statement is true, but without the verifier
gaining any other knowledge during the exchange (e.g. why the statement is
true). Thus, there are three core requirements in zero-knowledge proofs:



Completeness For true statements, a prover can convince the verifier.
Soundness For false statements, a prover cannot convince the verifier (even if

the prover cheats and deviates from the protocol).
Zero-Knowledge The verifier will not learn anything from the interaction apart

from the fact that the statement is true.

The statements we will be concerned with here are of the form u ∈ LR, where
LR is an NP-language defined by a polynomial time decidable binary relation
R. For (u,w) ∈ R, we say u is the statement and w is a witness for u ∈ LR.
The prover knows the witness w, and wants to convince the verifier that u ∈ LR

without revealing anything else. In particular, the prover does not want to reveal
the witness w.

1.1 Motivation

Here we will describe a few applications of zero-knowledge protocols. We do not
aim to be exhaustive, but rather to provide some context in terms of applications.

e-Voting. Let’s consider a simple voting setting: individual voters cast their votes
and the electoral authorities produce the tally. To keep their votes private, the
voters encrypt their votes. There are encryption schemes with a homomorphic
property that allows the addition of the votes in encrypted form. If ballots consist
of encrypted 0s and 1s (signifying “no” and “yes”), then the authorities can use
the homomorphic property to produce an encrypted sum of all the votes. The
authorities can then decrypt the ciphertext with the sum of the votes to get the
election result, the number of “yes” votes, without the need to decrypt any of
the individual ballots.

Unfortunately, this solution is too simple. What is to stop a voter from
cheating by encrypting a 2 instead of the prescribed 0 or 1? In effect, the voter
would be voting twice. We want to prevent voters from deviating from the voting
protocol, but at the same time we want their votes to remain private. So, we
want to verify that their ballots are valid, i.e., encrypt 0 or 1, but at the same
time the voters do not want to reveal which vote they are casting, i.e., whether
the plaintext is a 0 or a 1. This can be accomplished by using zero-knowledge
proofs between the voters and the electoral authorities. Each voter acts as a
prover that demonstrates her encrypted vote is valid. Completeness means that
the ballots of honest voters are accepted. Soundness ensures that invalid ballots
are rejected. And zero-knowledge keeps the votes secret.

Mix-nets. Mix-nets [Cha88] are a tool for anonymous messaging given a broadcast
channel. Instead of directly addressing messages to their recipients, a sender
might opt to use a Mix server as an intermediary. The sender encrypts the
message and recipient with the server’s public key and addresses the message to
the server. Once the server has collected a number of messages, it decrypts all of
them and broadcasts the plaintexts in a randomized order. We can expand on
this construction by using multiple servers in sequence and threshold decryption:



each server removes part of the encryption and randomly reorders the list of
ciphertexts. The advantage of this construction is that no single server can
determine which input corresponds to which output.

However, this procedure gives dishonest servers too much freedom. In partic-
ular, they might opt to drop messages and replace them with their own. Worse,
even if the replacement is noticed, it will be hard to attribute it to a single
server. Again zero-knowledge proofs come to the rescue. A solution is to ask
each server to prove it acted honestly; that is to demonstrate that there exists a
reordering such that the server’s outputs is a partial decryption (consistent with
the server’s private key) of the server’s inputs. Obviously, this proof should not
reveal the concrete reordering or the server’s private key, which is why it should
be zero-knowledge.

Playing nicely. In general, we can use zero-knowledge protocols to ensure that
parties are following the prescribed protocol for any particular operation. This is
a powerful tool since it prevents active attacks where somebody tries to cheat by
deviating from the protocol.

1.2 Example: A Zero-Knowledge Proof for Graph Isomorphism

In this section we will use a simple zero-knowledge proof for graph isomor-
phism [GMW91] as an example to illustrate a common protocol flow. We can
think of an undirected graph as a set of vertices V and a set of edges E between
the vertices. Two graphs G0 = (V,E0) and G1 = (V,E1) are isomorphic if there
is a permutation of the vertices and edges mapping one graph to the other, see
Fig. 1 for an example. More precisely, we say a permutation f : V → V is an
isomorphism from G0 to G1 if for all pairs of vertices (u, v) ∈ E1 if and only
if (f(u), f(v)) ∈ E2. Graph isomorphisms are transitive, if we have two graph
isomorphisms f : G0 → G1 and g : G1 → G2 then g ◦ f : G0 → G2 is a graph
isomorphism between G0 and G2.

Given graphs G0, G1 it is easy to check whether a permutation f of the
verticies is a graph isomorphism. On the other hand, there is currently no known
polynomial time algorithm that given two graphs G0 and G1 can determine
whether they are isomorphic or not. We will in the following consider the situation
where the statement consists of a claim that two graphs are isomorphic to each
other. The prover knows an isomorphism between the graphs, but wants to
convince the verifier that they are isomorphic without revealing the isomorphism.
More precisely, we consider the language of pairs of isomorphic graphs LR =
{(G0, G1)} defined by the relation R = {((G0, G1), f) : G1 = f(G0)}.

Statement: A pair of graphs G0, G1 on the same set of vertices V .
Prover’s witness: An isomorphism f between G0 and G1.
Protocol:

– The prover picks a random permutation h : V → V and computes
H = h(G1). She stores h and sends H to the verifier.

– The verifier picks a random challenge b← {0, 1}.
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Fig. 1: Two isomorphic graphs: Reordering ABCD to CDAB maps the first graph
to the second.

– If b = 0 the prover sends g = h ◦ f to the verifier. If b = 1 the prover
sends g = h to the verifier.

– The verifier accepts the proof if g(Gb) = H.

It is simple to see that our protocol is complete. If G0 and G1 are isomorphic
to each other, then both of them are isomorphic to H. Furthermore, the prover
who knows the isomorphism f can easily compute both the isomorphism between
G0 and H and the isomorphism between G1 and H. So she can answer both of
the possible challenges b ∈ {0, 1} and has 100% probability of convincing the
verifier.

Our protocol is sound in the sense that there is 50% chance of catching a
cheating prover. If G0 and G1 are not isomorphic then H cannot be isomorphic
to both. So, if the verifier picks b such that Gb is not isomorphic to H, then the
prover cannot answer the challenge.

To increase our chance of catching a cheating prover, we can repeat the
challenge and response protocol. We modify the protocol to perform n repetitions
for the same G0, G1 but different Hi, bi and gi. In each interaction, we have 50%
chance of catching the cheating prover, so overall the risk of cheating is reduced
to 2−n.

In the soundness discussion above, we considered a cheating prover using
non-isomorphic G0, G1. But what about the case where G0 and G1 are isomorphic
but the prover might or might not know f? Soundness provides no guarantees:
it ensures that a witness w exists, but not that the prover knows it. The graph
isomorphism protocol gives a stronger guarantee, which we will refer to as



extractability. Suppose the prover after having sent H can answer both challenges
b = 0 and b = 1, then it could actually compute an isomorphism f = g−11 ◦
g0 between G0 and G1. We will later define a zero-knowledge protocol to be
extractable if it is possible to extract a witness from a succesful prover, for instance
by rewinding it and running it again on a new challenge.

Finally, there is the zero-knowledge property. This can be somewhat puzzling:
what does it mean for a run of the protocol not to give the verifier any new
information? We will define zero-knowledge through simulation. If the verifier
could simulate the protocol transcript himself without interacting with the prover,
then he cannot have learned anything new from seeing the transcript.

The graph isomorphism proof can be simulated by first picking a random
permutation g, then guessing at random b← {0, 1}, and finally setting H = g(Gb).
With 50% probability the guess b matches what the verifier would send after
seeing H, and in that case we have a simulated proof transcript (H, b, g). If our
guess is wrong, we just rewind the verifier to the start and try again with a new
random g and b until we guess the challenge correctly.

Let us argue that if G0, G1 are isomorphic then the transcripts produced by
successful simulations are identical to those produced by real executions of the
protocol. In both cases we can think of g as a uniformly random renumbering
of the vertices of G0 or G1, which means that H is uniformly random. We also
note that the distribution of b given H is unchanged. Therefore, we see that
the probability distributions of real and simulated transcripts are identical. The
important thing to notice about the simulation is that we do not use the witness
at all to simulate. Therefore, the simulated transcript cannot leak any information
about the witness. Since the real proofs have the same probability distribution
as the simulated proofs this means they do not leak any information either.

1.3 Security and Performance Parameters.

Zero-knowledge proofs come in many flavours depending on the application. The
particular choice depends on the desired security properties and performance
parameters. We will now discuss some of these options.

Security properties. Completeness, soundness and zero-knowledge often come in
one of three flavours: perfect, statistical and computational. Perfect completeness
means that an honest prover will always convince an honest verifier on a true
statement, perfect soundness means that it is impossible to prove a false statement,
and perfect zero-knowledge means that transcripts can be perfectly simulated
and leak no information whatsoever.

In the graph isomorphism example we have perfect completeness and perfect
zero-knowledge, but not perfect soundness since a cheating prover has 50% chance
of convincing the verifier on a false statement. Even if we repeat the protocol n
times, there is still 2−n chance of cheating and we do not get perfect soundness.
However, we get statistical soundness in the sense that there is negligible small
probability of cheating the verifier.



Perfect soundness can be relaxed to statistical soundness, where we require a
prover has negligible probability of cheating the verifier. We can relax it further
to computational soundness, where we admit the possibility of cheating, but
are content if it is computationally infeasible to find a way to cheat. We have
computational soundness, when it is unlikely that a probabilistic polynomial time
prover can cheat.

Perfect zero-knowledge can be relaxed to statistical zero-knowledge, where
the simulated transcript just needs to have a probability distribution that is close
to that of a real proof. It can be further relaxed to computational zero-knowledge,
where a computationally bounded verifier cannot tell whether it is seeing a
transcript of an interaction with a real prover or a simulation of its view of such
an interaction.

Interaction. The graph isomorphism proof we described needs three messages to
be exchanged between the two parties, starting with the prover. In general, we
measure the interaction of a zero-knowledge proof in the number of messages or
moves the parties makes. We will refer to two moves as a round consisting of one
move from each side.

When expanding the graph isomorphism protocol to n repetitions, we can
easily see that the number of moves becomes 2n+ 1 since we can combine the
last message of iteration i with the first message of iteration i+ 1 since both are
sent from the prover. Another option would be to perform the multiple iterations
in parallel to reduce interaction. However, parallel composition does not always
yield the desired result. Parallel composition of zero-knowledge proofs does not
necessarily result in a zero-knowlegde proof [GK96], or soundness may be less
than what we might expect [BIN97].

In general, we aim to restrict the number of rounds used by protocols, as it
requires that participants are available and need to remember previous messages
for an extended period. One particular class of zero-knowledge proofs are those
consisting of a single move from the prover to the verifier. We call these proofs
non-interactive and will return to them in Section 3.

Communication. We consider the communication cost of the protocol to be the
total bit-length of all messages exchanged by the two parties. We often compare
the communication to the size of the statement as an indication of relative
efficiency.

In the graph isomorphism proof, the statement is two graphs of k vertices
G0, G1, which we can represent with two adjacency matrices using less than k2

bits since they are symmetric. The communication consists of the graph H (less
than 1

2k
2 bits), the reply b (1 bit) and a description of g (in the order of k log k

bits). The communication cost is thus linear in the size of the statement.

Computation. We usually distinguish between the computation cost of the prover
and that of the verifier. We often opt to make verification quicker at the expense
of the prover. First, in some settings, such as voting, a non-interactive proof for
a ballot being valid is only created once but may be seen and verified multiple



times. Second, in applications such as verifiable computation the verifier is much
weaker than the prover and it is only natural to try and lessen the computational
load of the verifier. Finally, one may argue that being computationally bounded is
a core characteristic of the verifier. If the verifier was computationally unbounded,
she could check whether a statement u ∈ L directly. This would eliminate the
need for a proof in many cases.

Security setting. Most protocols do not exist in vacuum; their security is based
on a number of assumptions. These assumptions may be computational in nature,
where a certain mathematical problem is considered hard to solve. There are
also zero-knowledge protocols making stronger assumptions on the underlying
primitives, e.g., many zero-knowledge proofs rely on the random oracle model
where a cryptographic hash-function is assumed to behave like a truly random
function [BR93].

A potential resource but at the same time potential security liability is the
environment in which the zero-knowledge proof is executed. Interactive zero-
knowledge proofs can be executed without any setup but the availability of a
common reference string, e.g., a bit-string with a certain probability distribution,
may improve performance. For non-interactive zero-knowledge proofs it is neces-
sary and unavoidable to have a common reference string or some other form of
assistance.

1.4 Notation

In the next two sections, we will give an overview of main ideas in Σ-protocols,
which yield efficient interactive zero-knowledge proofs, and non-interactive zero-
knowledge proofs. It will be useful to establish some common notation.

We write y = A(x; r) when an algorithm A on input x and randomness r,
outputs y. We write y ← A(x) for the process of picking randomness r at random
and setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from a set S. We will for convenience assume uniform random sampling from
various types of sets is possible; there are easy ways to amend our protocols to the
case where the sets are only sampleable with a distribution that is statistically
close to uniform.

We assume all algorithms and parties in a cryptographic protocol will directly
or indirectly get a security parameter λ as input (which for technical reasons will
be written in unary 1λ to ensure the running time is polynomial). The intuition
is that the higher the security parameter the more secure should the scheme be.
We will define security in terms of experiments that define the execution of a
scheme in the presence of the adversary, and predicates that define whether the
adversary succeeded in breaking the scheme. We are interested in the probability
that the adversary breaks the scheme, for which we use the notation

Pr[output← Experiment(1λ) : Predicate(output)].



We will use the notation A for the adversary and assume it is either unbounded
or efficient, where we define an efficient adversary as one that runs in probabilistic
polynomial time.

Given two probability functions in the security parameter f, g : N→ [0, 1] we
say that they are close and write f(λ) ≈ g(λ) when |f(λ)− g(λ)| = O(λ−c) for
every constant c > 0. We say that f is negligible if f(λ) ≈ 0, and we say that
f is overwhelming if f(λ) ≈ 1. We will in many security definitions want the
adversary’s success probability to be negligible in the security parameter.

2 Σ-Protocols

In the previous section we discussed an interactive proof system for graph
isomorphism. In the example the verifier picks a random challenge in {0, 1} and
the prover has probability 1

2 of convincing the verifier of a false statement. The
protocol needs to be iterated many times in order to reduce this probability and
achieve good soundness. In this section we describe 3-move interactive proof
systems in which the verifier picks a uniformly random challenge from a much
larger space. This means a cheating prover has small probability of guessing the
verifier’s challenge in advance. The size of the challenge space is made big enough
so that a single execution of the protocol suffice to convince the verifier. This
kind of interactive proof systems often goes under the name of Σ-protocols.

2.1 Definitions

Σ-protocols are 3-move interactive proof systems that allow a prover to convince
a verifier about the vaildity of a statement. The prover sends an initial message
a to the verifier, the verifier replies with a random challenge x, and the prover
answers with a final response z. The verifier finally checks the transcript (a, x, z)
and decides whether to accept or reject the statement.

A Σ-protocol is public coin, which means that the verifier picks the challenge
x uniformly at random and independently of the message sent by the prover.

Definition 1 (Σ-protocol). Let R be a polynomial time decidable binary rela-
tion and let LR be the language of statements u for which there exists a witness
w such that (u,w) ∈ R . A Σ-protocol for a relation R is a tuple (P,V) of
probabilistic polynomial time interactive algorithms such that

– a← P(u,w) : given a statement u and a witness w such that (u,w) ∈ R, the
prover computes initial message a and sends it to the verifer.

– x← S : the verifier picks a uniformly random challenge x from a large set S
and sends it to the prover.

– z ← P(x) : given challenge x the prover computes a response z and sends it
to the verifier.

– 1/0← V(u, (a, x, z)) : the verifer checks the transcript (a, x, z) and returns 1
if she accepts the argument and 0 if she rejects it.



A pair of efficient algorithms (P,V) is a Σ-protocol if is complete, special sound
and special honest verifier zero-knowledge in the sense of the following definitions.

Completeness guarantees that if both prover and verifier are honest, then the
verifier accepts when u ∈ LR and the prover knows the corresponding witness.

Definition 2 (Completeness). (P,V) is computationally complete if for all
probabilistic polynomial time adversaries A

Pr
[
(u,w)← A(1λ); a← P(u,w);x← S; z ← P(x) : V(u, (a, x, z)) = 1

]
≈ 1,

where A outputs (u,w) ∈ R.
If this holds for unbounded adversaries A, we say that (P,V) is statistically

complete. If the probability above is also exactly equal to 1 we says that (P,V) is
perfectly complete.

A Σ-protocol is a form of proof of knowledge, in the sense that a prover
should be able to answer random challenges only if she knows a witness for
a statement u. This is formalised via special soundness which says that given
two accepting transcripts corresponding to two distinct challenges and the same
initial message it is possible to extract a witness for the statement.

Definition 3 (Special Soundness). (P,V) is computationally special sound
if there exists an efficient extractor algorithm E such that for all probabilistic
polynomial time adversaries A

Pr

[
(u, a, x, z, x′, z′)← A(1λ);w ← E(a, x, z, x′, z′) :
V(u, (a, x, z)) = 0 or V(u, (a, x′, z′)) = 0 or (u,w) ∈ R

]
≈ 1.

If this holds for unbounded adversaries A, we say that (P,V) is statistically
special sound. If the probability above is also exactly equal to 1 we says that (P,V)
is perfectly special sound.

A Σ-protocol is zero-knowledge if it does not leak information about the
witness beyond the membership of u in the language LR. The definition of zero-
knowledge follows the simulation paradigm, which says that if it is possible to
simulate an accepting transcript without knowing a witness, then the protocol is
not leaking information about the witness. At first, this might seem in contradic-
tion with the soundness requirement, which says that is should be hard to produce
an accepting transcript without knowing a witness. However, the simulator is not
taking part in the real execution of the protocol, and therefore we can assume it
to be less restricted than the parties directly involved in the protocol. We can
for example allow the simulator to produce messages forming the transcript in
a different order than it happens during the real interaction. In case of special
honest verifier zero-knowledge, we restrict the verifier to be a public coin verifier
that picks random challenges independently from the messages she receives from
the prover. In this setting the simulator is given the verifier’s challenge x and
has to simulate a conversation between prover and verifier without knowing a
witness.



Definition 4 (Special Honest Verifier Zero-Knowledge). A public coin ar-
gument (P,V) is computationally special honest verifier zero-knowledge (SHVZK)
if there exists a probabilistic polynomial time simulator S such that for all proba-
bilistic polynomial time stateful adversaries A

Pr
[
(u,w, x)← A(1λ); a← P(u,w); z ← P(x) : A(a, x, z) = 1

]
≈Pr

[
(u,w, x)← A(1λ); (a, z)← S(u, x) : A(a, x, z) = 1

]
If this holds for unbounded adversaries A, we say that (P,V) is statistically
special honest verifier zero-knowledge. If the probabilities above are also exactly
equal we says that (P,V) is perfectly special honest verifier zero-knowledge.

The above definition of zero-knowledge might not be strong enough for many
applications since it is assuming a semi-honest verifier that does not deviate from
the protocol. However, there are efficient transformations [DGOW95, Dam00,
GMY06] for SHVZK Σ-protocols to obtain full zero-knowledge against malicious
verifiers with a small overhead in communication and computation.

2.2 Σ-Protocol for the equivalence of discrete logarithm

Consider two group elements s, t ∈ G, such that they share the same discrete
logarithm with respect to two different generators g, h ∈ G. We now give a simple
Σ-protocol for the equality of discrete logarithms of s and t. More precisely we
describe a Σ-protocol for the following relation

R = {(u,w)|u = (G, p, g, h, s, t); g, h, s, t ∈ G; s = gw; t = hw}

where G is a group of prime order p with |p| = λ.
The prover starts by picking a random field element r from Zp and then

computes two blinding elements a = gr, b = hr and sends them to the verifier.
The verifier picks a uniformly random challenge x← Zp and sends it back to the
prover. The prover computes the field element z = wx+ r and sends it to the
verifier. The verifier checks if both of the following verification equations hold

gz = sxa hz = txb

in which case accept the proof and otherwise rejects it. The argument is sum-
marised in Fig. 2.

The idea behind the protocol is that if the prover knows the discrete logarithm
of s and t, then she can compute the discrete logarithm of sx and tx with respect
to base g and h. Moreover, if a and b have the same discrete logarithm, then so
will sxa and txb.

The protocol above is clearly complete. If both the prover and the verifier are
honest, the verifier will always accept statements in the language.

For special soundness consider two accepting transcripts (a, b, x, z) and
(a, b, x′, z′) for distinct challenges x, x′ and the same initial message (a, b). Dividing



P(G, p, g, h, s, t, w) V(G, p, g, h, s, t)

r ← Zp
a = gr

b = hr a, b
-

x← Zp�

z = wx+ r mod p z Accept if and only if
-

a, b ∈ G
gz = sxa
hz = txb

Fig. 2: Σ-protocol for equivalence of discrete logarithm.

the verification equation gz = sxa by gz
′

= sx
′
a we obtain gz−z

′
= sx−x

′
. There-

fore we have that the discrete logarithm of s with respect to g is w = z−z′
x−x′ mod p.

Similar calculations on the other verification equations tells us that the discrete
logarithm of t with respect to base h is w too.

For SHVZK we need to show a simulator that given a uniformly random
challenge x as input can produce a transcript indistinguishable from a real
transcript. The simulator can pick a uniformly random field element z and
compute the first message as a = gzs−x and b = hzt−x. Note that x and z have
the same distribution as in the real execution of the protocol and that a, b are
uniquely determined given x and z. Therefore the transcript (a, b, x, z) output
by the simulator has the same distribution as an honestly generated transcript.

2.3 Commitment Schemes

Commitment schemes are key primitives for the construction of many crypto-
graphic protocols. They allow a sender to create a commitment to a secret value.
The sender may later decide to open the commitment and reveal the value in a
verifiable manner. We require two main properties to commitment schemes:

• Hiding: a commitment should not reveal the secret value it contains.
• Binding: the sender should not be able to open the commitment to a different

value.

Non-interactive commitments are a particularly useful type of commitment
scheme, for which both committing and verifying the opening of a commitment
can be done locally, without any interaction with other parties.

Formally, a non-interactive commitment scheme is a pair of probabilistic
polynomial time algorithms (Gen,Com). The setup algorithm ck ← Gen(1λ)
generates a commitment key ck. The commitment key specifies a message space
Mck, a randomness space Rck and a commitment space Cck. The commitment



algorithm combined with the commitment key specifies a function Comck :
Mck × Rck → Cck. Given a message m ∈ Mck the sender picks uniformly at
random r ← Rck and computes the commitment c = Comck(m; r).

Definition 5 (Hiding). A non-interactive commitment scheme (Gen,Com) is
computationally hiding if for all probabilistic polynomial time stateful interactive
adversaries A

Pr

[
ck ← Gen(1λ); (m0,m1)← A(ck); b← {0, 1};
r ← Rck; c← Comck(mb; r) : A(c) = b

]
≈ 1

2

where A outputs m0,m1 ∈Mck. If this holds for unbounded adversaries A, we
say that (Gen,Com) is unconditionally hiding. If the probability above is also
exactly equal to 1

2 , we says that (Gen,Com) is perfectly hiding.

Definition 6 (Binding). A non-interactive commitment scheme (Gen,Com)
is computationally binding if for all probabilistic polynomial time adversaries A

Pr

[
ck ← Gen(1λ); (m0, r0,m1, r1)← A(ck) :
Comck(m0; r0) = Comck(m1; r1) and m0 6= m1

]
≈ 0

where A outputs m0,m1 ∈Mck and r0, r1 ∈ Rck. If this holds for unbounded ad-
versaries A, we say that (Gen,Com) is unconditionally binding. If the probability
above is also exactly equal to 0, we says that (Gen,Com) is perfectly binding.

Many examples of commitment schemes have been proposed in the literature.
Two well-known examples are Pedersen [Ped91] and Elgamal [EG85] commitments,
which are based on the discrete logarithm assumption. In addition to the above
properties, both commitment schemes are also additively homomorphic, which
means that multiplying two commitments produces a commitment to the sum
of the openings. More precisely, we say a commitment scheme is additively
homomorphic if for all valid keys ck the message, randomness and commitment
spaces are abelian groups and for all messages m0,m1 ∈Mck and randomness
r0, r1 ∈ Rck we have

Comck(m0; r0) · Comck(m1; r1) = Comck(m0 +m1; r0 + r1).

Pedersen Commitments. Consider a group G of prime order p and let g, h
be random generators of the group. Message and randomnesses are in Zp and the
commitment space is the group G. The sender commits to an element m ∈ Zp by
picking a uniformly random r from Zp and computing c = gmhr. The scheme
is perfectly hiding and computationally binding, assuming that the discrete
logarithm assumption holds.

ElGamal Commitments. The commitment key, the message space and the
randomness space are defined as for Pedersen commitments. The commitment
space is G×G. Commitments are generated by picking a random r ← Zp and



Gen(1λ)→ ck Comck(m)→ c

· p← {0, 1}λ s.t. p is prime · If m /∈ Zp → ⊥
· G of order p · r ← Zq
· h← G s.t. 〈h〉 = G · c := gmhr

· g = hx for x← Zp
· ck := (G, p, g, h)

Fig. 3: Pedersen commitment.

Gen(1λ)→ ck Comck(m)→ c

· p← {0, 1}λ s.t. p is prime · If m /∈ Zp → ⊥
· G of order p · r ← Zq
· h← G s.t. 〈h〉 = G · c := (gr, gmhr)
· g = hx for x← Zp
· ck := (G, p, g, h)

Fig. 4: ElGamal commitment.

computing (gr, gmhr). The ElGamal commitment scheme is perfectly binding
and computationally hiding given that the decision Diffie-Hellman assumption
holds.

After seeing the above examples one might wish to build a commitment scheme
that achieves both hiding and binding properties unconditionally. Unfortunately,
this is not achievable. The reason is that an unbounded adversary A is always
able to compute an opening to a commitment. If the scheme is such that there
exists only one possible opening, then the scheme cannot be hiding. On the other
hand, if there are several distinct openings to a commitment then an unbounded
adversary can compute all of them and break the binding property.

2.4 Two useful examples of Σ-protocols

Commitment schemes and Σ-protocols are closely related. It is possible in fact to
construct commitment schemes out of Σ-protocols for hard relations as described
in [Dam90]. It is also convenient to rethink the interaction of Σ-protocols in
terms of committing and opening. A general way to build Σ-protocols is to let the
prover commit to some values in the first move, and to open some commitments
depending on the challenge in the last move.

We try to illustrate this general approach by showing two examples of
Σ-protocols. The first one is a protocol for showing that a commitment opens to
0. The second protocol is for proving that a commitment opens to the product of
the openings of two other commitments.

Σzero. Consider a commitment A opening to 0 to be part of the statement. The
prover computes a random commitment B = Comck(0; s) and sends it to the
verifier, which answer with a random challenge x. The prover then sends opening
information z to the verifier, which checks the commitment AxB opens to 0 using
randomness z. The full description of the protocol is in Fig. 5.



Pzero(ck,A, (0; r)) Vzero(ck,A)

s← Zp
B = Comck(0; s) B

-

x← Zp�

z = rx+ s mod p z Accept if and only if
-

B ∈ G, z ∈ Zp
Comck(0; z) = AxB

Fig. 5: Σ-protocol for opening a commitment to 0.

This protocol could be used also to prove equality of openings of commitments.
Given two commitments A1 and A2 it suffices to use Σzero to show that A1A

−1
2

opens to zero. In the protocol we only require the commitment scheme to be
homomorphic, therefore it can be instantiated with both Pedersen and ElGamal
commitments. In both cases we get perfect completeness, perfect soundness and
perfect special honest verifier zero-knowledge.

Σprod. For this protocol we focus on the case of Pedersen commitments and refer
to [CD98] for the more general case. Let A,B,C be commitments opening to a, b
and ab, respectively. Consider a commitment key ck = (G, p, g, h). The main idea
is for the prover to prove knowledge of opening of A and B and showing that C
opens to the same value of A when replacing g with B in the commitment key.
Let ck′ = (G, p, B, h) be the modified key, thus

C = Comck(ab; rc) = gabhrc = Bahrc−arb = Comck′(a; rc − arb)

The full description of the protocol is in Fig. 6. The protocol, Σprod achieves
perfect completeness, perfect SHVZK and computational special soundness.

2.5 Composition of Σ-protocols

One of the characteristics that makes Σ-protocols very appealing is that it is
easy to combine several of them together to obtain a Σ-protocol for compound
relations. This allows a very modular design of complex Σ-protocols starting
from simple building blocks.

For example, Σ-protocols are closed under parallel composition, therefore we
can combine many Σ-protocols together using a unique verifier’s challenge to
prove that many statements hold simultaneously. Completeness, special soundness
and SHVZK of the combined protocol are directly implied by the respective
properties of the singular protocols. In particular for special soundness and
SHVZK, we can define an extractor and a simulator respectively running in



Pprod(ck,A, (a; ra), B, (b; rb), C, (ab; rc)) Vprod(ck,A,B,C)

d, e, s, s′, t← Zp
ck′ := (G, p, B, h)
D = Comck(d; s)
D′ = Comck′(d; s′)
E = Comck(e; t) D,D′, E

-

x← Zp�

f1 = ax+ d mod p
z1 = rax+ s mod p
f2 = bx+ e mod p
z2 = rbx+ t mod p Accept if and only if
z3 = (rc − arb)x+ s′ mod p f1, f2, z1, z2, z3 D,D′, E ∈ G

-
f1, f2, z1, z2, z3 ∈ Zp
Comck(f1; z1) = AxD
Comck(f2; z2) = BxE
Comck′(f1; z3) = CxD′

Fig. 6: Σ-protocol for the product of openings of Pedersen commitments.

parallel the extractors and simulators of the constituent Σ-protocols on the same
challenge.

Given two protocols Σ0 and Σ1 for relations R0 and R1, it is possible to
combine them to show that one statement out of u0, u1 holds, without disclosing
which one. This transformation was first introduced in [CDS94] and could be
easily extended to prove the validity of one statement out of many. The idea
is to allow prover POR to simulate the transcript for at most one of the two
statements. Without loss in generality, consider a prover knowing a witness
w0 for u0. Then the prover can pick a random challenge x1 and simulate an
accepting transcript (a1, x1, z1) for u1 by invoking simulator S1 for Σ1. In the
first move the prover sends to the verifier a0 generated as in Σ0 and simulated a1.
Upon receiving a challenge x form the verifier, the prover computes x0 = x⊕ x1.
The prover computes responses z0 using challenge x0 and sends z0, z1, x0, x1
to the verifier. Then, the verifier checks that x = x0 ⊕ x1 and accepts if both
transcripts (a0, x0, z0) and (a1, x1, z1) are accepting. As above, completeness
special soundness and SHVZK of the combined protocol are directly implied by
the respective properties of the individual protocols. In particular for SHVZK, the
simulator SOR receives a challenge x as input, picks a random x1 and computes
x0 such that x = x0 ⊕ x1. Then, SOR invokes S0 and S1 respectively on x0 and
x1. The simulated transcript has the same distribution as a real transcript.



2.6 Arithmetic Circuits

To illustrate the capabilities of Σ-protocols, we show how to build a protocol for
a more general relation combining several simpler protocols. For example using
many parallel executions of the zero and product Σ-protocols in Section 2.4 we
can provide Σ-protocols for the satisfiability of arithmetic circuits. To prove
satisfiability of an arithmetic circuit the prover has to commit to all the wi
corresponding to wire assignments and then prove consistency of inputs and
outputs of addition gates using Σzero and multiplication gates using Σprod.

Consider for instance a very simple arithmetic circuit over Zp consisting of
fan-in-2 addition and multiplication gates, as the one pictured in Fig. 7. The
prover computes commitments Wi = Comck(wi, ri) for random ri and then shows
that both commitments W1 ·W2 ·W−13 and W4 ·W5 ·W−17 open to 0 and that
W3 and W8 open to w1 · w2 and w6 · w7, respectively.

×

w1 w2

+

w3

×
w6

+

w5w4

w7

w8

Fig. 7: Example of an arithmetic circuit.

For an arithmetic circuits with N addition and multiplication gates we need to
combine N parallel executions of Σzero and Σprod. The resulting communication
amounts to O(N) commitments and field elements.

2.7 Batching

When proving the same relation many times, there are more efficient solutions
than executing many Σ-protocols in parallel. As a simple example, if we have
several commitments A1, . . . , An and want to prove all of them contain zero, we
can use the protocol in Fig. 8. The underlying idea is to use the homomorphic
property to build a committed degree n polynomial in the challenge x, with



the committed values as coefficients. This committed polynomial has negligible
probability of evaluating to 0 in the random challenge x unless it is the zero
polynomial, i.e., all the committed values are 0. Using this protocol we only
communicate a constant number of elements to prove a statement of size n
elements is true.

Pbatch(ck,A1, . . . , An, r1, . . . , rn) Vbatch(ck,A1, . . . , An)

s← Zp
B = Comck(0; s) B

-

x← Zp�

z = s+
∑n
i=1 rix

i mod p z Accept if and only if
-

B ∈ G, z ∈ Zp
Comck(0; z) = B

∏n
i=1A

xi

i

Fig. 8: Batch Σ-protocol for opening of many commitments to 0.

Another way to batch arguments together is to commit to many values at once.
We can build commitments to vectors rather than single elements and extend the
previous techniques to vector commitments. We can for instance extend Pedersen
commitments to allow openings in Znp , as described in Fig. 9. This extension
preserves the same properties of the standard Pedersen commitment scheme but
committing to n elements only requires sending a single group element.

Gen(1λ)→ ck Comck(m)→ c

· p← {0, 1}λ s.t. p is prime · If m /∈ Znp → ⊥
· G of order p · m = (m1, . . . ,mn)
· h← G s.t. 〈h〉 = G · r ← Zq
· (x1, . . . , xn)← Znp · c := hr

∏n
i=1 g

mi
i

· gi = hxi for i ∈ [n]
· ck := (G, p, h, g1, . . . , gn)

Fig. 9: Pedersen commitment for vectors of length n.

Groth [Gro09] used batching techniques and vector commitments together to
give zero-knowledge arguments for linear algebra relations over vectors. These
techniques make it possible to give arguments for the satisfiability of arithmetic
circuits with an overall communication of O(

√
N) group and field elements. So

arithmetic circuit satisfiability and many other relevant relations can be proved
with sublinear communication.



3 Non-interactive zero-knowledge proofs

In interactive zero knowledge proofs, the prover and the verifier interact over
multiple rounds, and can vary their responses depending on the messages that
they have received so far. By contrast, non-interactive zero knowledge proofs
consist of a single message sent by the prover to the verifier. Non-interactive proofs
are typically more difficult to construct than interactive proofs, and often rely
on stronger assumptions. However, they are useful in settings where interaction
cannot or should not take place, such as digital signatures and encryption schemes.

Non-interactive zero-knowledge proofs were introduced by Blum, Feldman
and Micali [BFM88], who produced a proof for the 3-colourability of graphs
under a number-theoretic assumption.

3.1 Formal Definitions

A non-interactive proof system for a relation R consists of three probabilistic
polynomial time algorithms. There are the common reference string generator
Gen, the prover P, and the verifier V. The common reference string generator
takes the security parameter as input and produces a common refrence string σ.
The prover takes (σ, x, w) as input and produces a proof π. The verifier takes
(σ, x, π) as input and outputs 1 if accepting the proof as valid, and 0 if rejecting
the proof.

We call (Gen,P,V) a non-interactive proof system for R if it has the com-
pleteness and perfect soundness properties to be defined below. If (Gen,P,V) has
completeness and computational soundness, we call it a non-interactive argument
system.

Completeness. As with interactive proofs, completeness states that a prover
should be able to prove a true statement.

Definition 7 (Completeness). We say the proof system is perfectly complete
if for all λ ∈ N and all (u,w) ∈ R

Pr
[
σ ← Gen(1λ);π ← P(σ, u, w) : V(σ, u, π) = 1

]
= 1.

For statistical completeness, the definition is changed so that the probability is
close 1. For computational completeness, we restrict to probabilistic polynomial
time adversaries A, and change the definition so that the probability close to 1.

Soundness. Soundness states that a cheating prover should not be able to prove
a false statement; even when deviating from the protocol.

Definition 8 (Soundness). We say the proof system has (adaptive) perfect
soundness if for all λ ∈ N and all adversaries A

Pr
[
σ ← Gen(1λ); (u, π)← A(σ, u) : u /∈ LR and V(σ, u, π) = 1

]
= 0.



The definition can be relaxed to statistical soundness by changing the definition
such that the probability is close from 1 instead of requiring exact equality. For
computational soundness, we restrict to probabilistic polynomial time adversaries
A, and change the definition so that the probability is close 1.

A weaker definition is that of non-adaptive soundness. Here the adversary
A is given a false statement u /∈ LR independently of the common reference
string σ. Adaptively sound proofs are harder to construct, but are more versatile
since in many cases the false statement could be chosen after seeing the common
reference string. Adaptively sound proofs also have the advantage that the same
common reference string can be reused to prove different statements u from the
same language.

Proof of Knowledge. A non-interactive proof system is a proof of knowledge if it
is possible to recover the witness w from the proof. More formally, we say that a
non-interactive proof system is a proof of knowledge if there exists a probabilistic
polynomial time knowledge extractor E = (E1, E2) such that E1 produces a
correctly generated common reference string with extraction key ξ, which E2

uses to extract a valid witness from a proof.

Definition 9 (Knowledge Extraction). We say the proof system has perfect
knowledge extraction if for all λ ∈ N, and all adversaries A

Pr
[
σ ← Gen(1λ) : A(σ) = 1

]
= Pr

[
(σ, ξ)← E1(1λ) : A(σ) = 1

]
and

Pr
[
(σ, ξ)← E1(1λ); (u, π)← A(σ);w ← E2(σ, ξ, u, π) : (u,w) ∈ R if V (σ, u, π) = 1

]
= 1.

For statistical knowledge extraction, the definition is changed so that the first
two probabilities are close to each other, and the third is close to 1. For the
computational version, we restrict to probabilistic polynomial time adversaries A.

Perfect knowledge extraction implies perfect soundness. This is because if a
valid proof π is given for statement u, we can extract a witness w with (u,w) ∈ R,
so in particular, x ∈ LR.

Zero-Knowledge. The zero-knowledge property ensures that a non-interactive
proof reveals nothing except for the truth of the statement being proved. As with
interactive zero-knowledge proofs, this is achieved using the simulation paradigm.
There must be an efficient simulator for the proof, so that any information
computed from a real proof could also be computed from a simulated proof.
There is no witness available when simulating the proof, so no information about
the witness is leaked. However, the simulator must have access to more than
just the statement u and a common reference string σ when simulating a proof.
Otherwise, anybody would be able to create a convincing proof, even without the
witness! To this end, the simulator is allowed to produce the common reference
string for itself, along with some extra information τ , the ‘simulation trapdoor’.
This trapdoor is used by the simulator, but is unavailable to an adversary against
the protocol.



Definition 10 (Zero-Knowledge). We call (Gen,P,V) an NIZK proof for R
with perfect zero-knowledge if there exists a simulator S = (S1,S2) such that for
all λ ∈ N, and all adversaries A

Pr
[
σ ← Gen(1λ); (u,w)← A(σ);π ← P(σ, u, w) : A(σ, π) = 0

]
= Pr

[
(σ, τ)← S1(1λ); (u,w)← A(σ);π ← S2(σ, τ, u) : A(σ, π) = 0

] .
For statistical zero-knowledge, the definition is changed so that the probabilities are
close to each other. For computational zero-knowledge, we restrict to probabilistic
polynomial time adversaries A, and change the definition so that the probabilities
are close to each other.

3.2 The Common Reference String

The definitions of an NIZK proof system require a common reference string to be
available to the prover and verifier. It would be desirable to try and remove this
requirement and obtain a proof system where the prover sends a single message
to the verifier, with no setup. Unfortunately, it can be shown that any such
proof system can only be used for languages that are easy to decide [Gol01] so
the verifier does not need the prover to be convinced that u ∈ LR. In order to
construct NIZK proof systems for non-trivial languages, a common reference
string or some other type of assistance is necessary.

A common reference string can be made up of uniformly random bits. In this
case, it is often referred to as a common random string. However, in many NIZK
proof systems, a more structured common reference string is generated according
to a different probability distribution.

The common reference string can be honestly generated by a trusted party.
Another solution is to use the multi-string model of Groth and Ostrovsky [GO14],
where random strings are produced by several authorities, and a majority of
strings are assumed to be honestly generated. This removes the need to completely
trust any single party. Secure multi-party computation can also be used to ensure
that the common reference string is generated correctly.

3.3 Public and Private Verifiability

In the original definitions, the verification algorithm takes σ, u and π as input. This
means that the proof can be verified by anybody. One variation is a designated-
verifier proof system. In this case, the setup algorithm Gen outputs a verifier
key ω as well as the common reference string, and the verification algorithm
takes ω, u and π as input. Now, proofs can only be privately verified. Public
verifiability corresponds to the special case where ω = σ.

Designated-verifier non-interactive proof systems are generally easier to con-
struct, and can be more efficient than publicly verifiable proofs. This is because
unlike publicly verifiable proofs, the verifier has ω, which is not available to
the prover. Designated verifier proofs can only be used to convince somebody



in posession of ω. This is in contrast with publicly-verifiable proofs, where a
single proof can be copied and sent to other recipients, and suffices to convince
everybody.

Private verifiability is sufficient for some applications, such as CCA-secure
encryption schemes including the Cramer-Shoup cryptosystem. However, public-
verifiability is necessary for many other applications such as signatures, and
universally-verifiable voting systems.

3.4 The Fiat-Shamir Heuristic

The Fiat-Shamir heuristic is a method for converting public coin interactive
zero-knowledge arguments into NIZK proofs. The first step is to include the
description of a cryptographic hash function H in the common reference string.
The prover computes their messages as they would in the interactive proof, but
replaces the verifier’s messages with a hash of the protocol transcript up to that
point.

P(σ, u, w) V(σ, u)

a1 ← P(σ, u, w) a1 -

e1 e1 ← C�

a2 ← P(σ, u, w, e1) a2 -

e2 e2 ← C�

...
...

...

an ← P(σ, u, w, e1, e2, en−1) an b← V(σ, u, a1, e1, . . . , an)
-

b ∈ {0, 1}

-

P(σ, u, w,H) V(σ, u,H)

a1 ← P(σ, u, w)

e1 = H(σ, u, a1)

a2 ← P(σ, u, w, e1)

e2 = H(σ, u, a1, e1, a2)

...

an ← P(σ, u, w, e1, e2, en−1)
(a1, e1, . . . , an) b← V(σ, u, a1, e1, . . . , an)

-
b ∈ {0, 1}

Fig. 10: The Fiat-Shamir Heuristic

The method yields highly efficient NIZK arguments in practice. By modelling
the hash function as a truly random function, or ‘random oracle’, it is possible
argue that the resulting arguments are sound [BR93]. Further, in the random
oracle model, even if the initial interactive proof only has honest verifier zero-
knowledge, the resulting argument will have full zero-knowledge.

However, in reality, hash functions are deterministic. It has been shown
[CGH00, ?] that there are interactive protocols which have soundness when H is
modelled as a truly random function, but which are insecure for any choice of
hash function H. Despite this theoretical problem, the Fiat-Shamir heuristic is
still used to produce arguments for practical applications, where the hope is that
it does give sound arguments for “natural” problems.

3.5 The Hidden Bits Model

In the hidden bits model, described in [FLS99], the prover uses the common
reference string in a particular way that produces some secret bits known only



to the prover. She can then choose to reveal individual bits to the verifier in a
verifiable manner.

One way the hidden bits model can be implemented as follows [FLS99, BY96,
Gro10a]: The prover chooses a public key for an encryption scheme. She then
interprets the common reference string as a sequence of ciphertexts. Since only
she knows the secret decryption key, only she knows the corresponding plaintexts.
If the encryption scheme allows revealing a plaintext in a verifiable manner,
she can now selectively disclose some plaintexts and let other plaintexts remain
secret.

A structured hidden bit-string is often more useful than a uniformly random
string. In order to create a structured hidden bit-string the prover may discard
or reveal certain bits in order to obtain, with good probability, a string with a
particular structure. As a simple example, if the prover orders the bits in pairs
and reveals the bits in all pairs of the form ‘00’ or ‘11’, then the verifier knows
that statistically speaking the remaining hidden bits are structured such that
almost all pairs are ‘01’ or ‘10’.

One technique to use a structured hidden bit string [KP98] is to group bits
in pairs, and reveal at most one bit from each pair. We refer to ‘11’ and ‘00’
as ‘R’ for random, and ‘10’ and ‘01’ as ‘W’ for wildcard. From ‘W’, the prover
can choose whether to reveal a ‘0’ or a ‘1’. From an ’R’ pair, the prover has
no choice in what to reveal since both bits are the same. Using this, and more
sophisticated structures, it is possible to set up equations the revealed bits should
satisfy. When the statement is true, the structure allows the prover to reveal bits
such that all equations are satisfied. When the statement is false, no choice of
bits to reveal will satisfy all equations. We will now give a simple example to
provide some intuition how this can work.

Example. Consider the formulae

x1 ∨ x2 = 1, (¬x1) ∨ x3 = 1, (¬x2) ∨ (¬x3) = 1

This is a very simple instance of the satisfiability problem and will form the
statement for an NIZK proof. Note that each variable and its negation appear
exactly once. We will consider blocks of four bits, and assume that every block has
exactly one ‘W’; we only use the blocks ‘WR’ and ’RW’. A proof of satisfiability
for these formulae will require one block for each variable, 3 blocks in this case.

The idea behind the proof is as follows. For each variable xi, exactly one of
the literals xi or ¬xi is equal to 1. This will be assigned to the ‘W’ part of the
block, while the other will be assigned the ’R’ part of the block. This means that
the prover can choose whether to reveal a ‘0’ or ‘1’ for the true value, which will
be the key to completeness, but has no choice about which bit to reveal for the
false value, which will help to enforce soundness.

The assignment x1 = 1, x2 = 0, x3 = 1 is a solution to the satisfiability
problem. This is the witness for the proof.

Suppose for example that the prover receives hidden bits in blocks ‘WR’,‘WR’,‘RW’.
Variables are assigned to blocks as follows.



W R W R R W
x1 ¬x1 ¬x2 x2 ¬x3 x3

Now, the prover reveals one bit from each pair. For the false values, the prover
is forced to reveal a particular bit, and randomly chooses between the first and
the second bit from the pair. For the true values, the prover chooses whether to
reveal a ‘0’ or a ‘1’ in order to make each formulae from the statement have odd
parity. In this example, the prover could reveal bits as follows.

W R W R R W
x1 ¬x1 ¬x2 x2 ¬x3 x3
1? ?1 1? 0? ?1 0?

The verifier now checks that the formulae are satisfied when the revealed bits
are substituted for each variable. The prover can always reveal bits consistent
with the formulae, because at least one ‘W’ has been assigned to each formula.

The proof does not give away any information about the witness, because
the pairs such as ‘1?’ that the verifier sees can originate from several different
bit-strings and possible witnesses.

In this example, the statement was true. But let us to argue soundness
consider what would happen for an unsatisfiable set of formulae. Then no matter
which assignment the prover chooses, there is at least one formulae where all
the variables have been assigned an ’R’ pair. Now for each pair in this formulae
the prover has only one choice of bit to reveal and there is 50% chance of the
revealed bits having even parity.

In the example shown above, it is very easy to work out a witness. For
more complicated satisfiability problems it is possible to design a similar proof
where, if there is no solution, then a large fraction of the verifier’s checks will
fail [KP98, Gro10a]. By increasing the size of blocks, and imposing further
conditions, the prover can only succeed with negligible probability in the case
where the statement is an unsatisfiable set of formulae.

3.6 Boneh-Goh-Nissim Encryption

Many public-key cryptosystems have homomorphic properties, but only recenty
have we seen the emergence of encryption schemes that are homomorphic with
respect to both addition and multiplication. Partial progress was made by Boneh,
Goh and Nissim [BGN05], who designed a public-key encryption scheme based
on pairings, which are bilinear maps arising from the study of algebraic geometry
and elliptic curves. This cryptosystem allows arbitrary additions on the encrypted
plaintexts, but only allows a single multiplication.

The BGN encryption scheme uses an group with an element g of order n,
where n is a product of two primes p and q, and an efficiently computable pairing.
Let G be the group of order n generated by g. Let h be a random, non-trivial
element of order p. The message space is chosen to be small so that it is easy to
take discrete logarithms and find the message m, given the element gpm.



Let e : G×G→ GT be the bilinear pairing map.
The public key of the scheme is G, n, g, h, and the secret key is p.
A message m is encrypted with randomness r ← Zn as the ciphertext c =

Enc(m; r) = gmhr.
Decryption is performed by raising the ciphertext to the power of the secret

key, p. Since h has order p, this removes the randomness from the ciphertext. We
have cp = gmphrp = gpm. Then, since the message space is small, it is easy to
take discrete logarithms and recover m.

It is easy to see that the scheme is homomorphic with respect to addition:

Enc(m1; r1)Enc(m2; r2) = (gm1hr1)·(gm2hr2) = gm1+m2hr1+r2 = Enc(m1+m2; r1+r2)

To do a multiplication of encrypted plaintexts, we apply the bilinear map to
two ciphertexts. Let e(g, g) = G, which has order n, and let e(h, h) = H, which
has order p. The elements e(g, h) and e(h, g) turn out to be powers of H by
properties of the pairing map. This means that

e (gm1hr1 , gm2hr2) = e(g, g)m1m2e(g, h)m1r2e(h, g)r1m2e(h, h)r1r2 = Gm1m2Hr′ ,

which is an encryption of m1m2 in GT with some randomness r′.

3.7 NIZK Proof for Circuit Satisfiability

By using the homomorphic properties of the BGN cryptosystem, we can obtain
a zero-knowledge proof of satisfiability for a Boolean circuit. Let C be a boolean
circuit, with W wires.

The prover begins by encrypting the values of the wires for the circuit to
produce |W| BGN ciphertexts. To show that the encrypted wire values satisfy the
circuit, each wire value must be either 0 or 1, and the output of each NAND gate
must be correct with respect to the two inputs. Figure 11 provides an example.

Let c = gmhr be a ciphertext. Then m is a bit if and only if m(m− 1) = 0.
We get an encryption of m− 1 by computing cg−1, and then an encryption of
m(m − 1) by computing e(c, cg−1), which should be an encryption of 0. The
prover sends π = (g2m−1hr)r ∈ G as part of the proof. The verifier then checks
that e(c, cg−1) = e(π, h). As shown in [GOS12], this demonstrates that e(c, cg−1)
has order p, which means that it must be an encryption of 0. There are |W| extra
group elements which must be added to the proof.

Finally, the prover must demonstrate that the wire values are correct with
respect to each NAND gate. For values m1,m2,m3 ∈ {0, 1}, we have that
m1 = ¬(m2 ∧m3) if and only if 2m1 +m2 +m3− 2 ∈ {0, 1}. The prover uses the
homomorphic property of the commitment scheme again to form an encryption
of 2m1 +m2 +m3 − 2. Then, the prover uses the same technique as for the wire
values to show that this value is a bit. This adds another |C| group elements to
the proof.

The total communication of the proof is therefore 2|W|+ |C| group elements.
The proof has perfect completeness and perfect soundness. It has computational
zero-knowledge relying on the semantic security of the BGN encryption scheme.
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c1 = Enc(w1; r1) π1 π′1,2,5
...

...
...

c7 = Enc(w7; r7) π7 π′6,7,8

Fig. 11: A simple Boolean circuit. To demonstrate satisfiability using the BGN
cryptosystem, the prover encrypts each wi, and produces an additional group
element to prove that they are bits. A further group element per gate used to
prove that the wire values respect the logic gates.

Boolean circuit satisfiability is an NP-complete language. Therefore, this
example shows that every language in NP has a non-interactive zero-knowledge
proof.

3.8 Succinct Non-interactive Arguments and Applications

Having seen a few examples of techniques for constructing NIZK proofs, it is
natural to ask how efficient they can be. Micali [Mic00] introduced the notion of
computationally sound proofs, which can be much smaller than the statement.
Motivated by applications such as verifiable computation, there has recently been
a lot of research on reducing the size of the proofs and making the verification
process very efficient.

A succinct non-interactive argument (SNARG) is a non-interactive argument
system that satisfies an additional succinctness property. SNARGs which are also
arguments of knowledge are referred to as SNARKs.

Definition 11 (Succinctness). A non-interactive argument system is succinct
if all proofs π satisfy

|π| = poly(λ)polylog (|u|+ |w|)

The development of SNARGs has culminated in pairing-based construc-
tions [Gro10b, Lip12, BCCT12, PHGR13, BCCT13, GGPR13, BSCTV14] which
use only a constant number of group elements and are extremely efficient to
verify. All arguments rely on very strong assumptions, but there is some evidence
that this may be unavoidable [GW11].



Verifiable Computation. The notion of verifiable computation was formalised
by Gennaro, Gentry and Parno [?]. In a verifiable computation scheme, a client
would like to outsource some computation to a worker who has more computing
power. However, the client would like some assurance that the worker performed
the computation correctly and delivered the correct result. The assurance takes
the form of a non-interactive proof produced by the worker to convince the client.
For this application, it is essential that proofs should have extremely small size
and that the computational cost of verifying a proof should be low.

Pinocchio [PHGR13] is a practical implementation where one can produce
schemes to convince the client that a C code was outsourced correctly. Pinocchio
takes a program written in C, computes conditions for correct running in the
quadratic arithmetic program model of [GGPR13], and outputs a SNARK which
can then be used to verify computation. The system has been tested in applications
such as image matching, gas simulations, and computing SHA-1 hashes to provide
benchmarking data.

Proof-Carrying Data. Proof-carrying data [?] is an approach to multi-party
construction of proofs that allows the construction of very efficient schemes.
Suppose that during a distributed computation, each party would like to be
convinced that all previous steps in the computation were performed correctly.
One way to do this would be to append to each message a non-interactive
proof that the computation was performed correctly so far, and forward on
non-interactive proofs for correct computation at previous steps. However, this
naive solution adds to the communication of distributed computation at each
step. A more sophisticated idea is for each party to include a proof of two facts.
Firstly, the party should have performed their step in the computation correctly.
Secondly, the party should have seen a valid proof that all previous steps in the
computation were correct. For this purpose, we can use SNARKs.

The message size does not increase after each step in the computation as a
result of the succinctness property of the SNARKs. Futhermore, SNARKs have
knowledge soundness, which means that in principle, knowledge-extractors for
the SNARK can be applied repeatedly to the final messages of the distributed
computation, to recover the entire history of the computation. This property is
essential for the security of the computation.

3.9 Efficiency

We compare the efficiency of some different NIZK proofs and arguments for
circuit satisfiability.

NIZK Proofs. By definition, NIZK proofs have perfect or statistical soundness,
which means that they are secure against even a computationally unbounded
prover. Figure 1 shows the efficiency of some NIZK proofs for circuit satisfiability.

Let λ be the security parameter. Define kT = poly(λ) to be the size of a
trapdoor permutation, kG ≈ k3 to be the size of a suitable group element, and



|C| = poly(λ) to be the size of the circuit. Let |w| ≤ |C| be the size of the witness
for satisfiability of the circuit.

CRS in bits Proof in bits Assumption

[GOS12] O(kG) O (|C|kG) Pairing-based

[Gro10a] |C|kTpoly log(λ) |C|kTpoly log(λ) Trapdoor Permutations

[Gro10a] |C|poly log(λ) |C|poly log(λ) Naccache-Stern

[GGI+14] poly(λ) |w|+ poly(λ) FHE and NIZK

Table 1: Performance comparison of NIZK Proofs for Circuit SAT

All the essential details of the proof from [GOS12] were presented earlier in
Section 3.7. This proof uses the BGN cryptosystem. The proofs from [Gro10a]
using techniques from the hidden bits model, implemented using either trapdoor
permutations or the Naccache-Stern cryptosystem.

The proof of [GGI+14] assumes the existence of a fully homomorphic encryp-
tion scheme. Fully homomorphic encryption allows for the multiplication and
addition of ciphertexts to produce encrypted multiplications and additions of the
plaintexts within. At a high level, the idea of this proof is to simply encrypt the
witness, and evaluate the circuit on the witness in encrypted form. The prover
then gives an NIZK proof that the resulting ciphertext contains a 1.

NIZK Arguments. By definition, NIZK arguments have computational sound-
ness, which means that they are secure assuming a computationally bounded
prover. Figure 2 shows the efficiency of some NIZK arguments for circuit satisfia-
bility.

CRS in group elements Argument in group elements

[Gro10b] O
(
|C|2

)
O(1)

[Lip12] O
(
|C|1+o(1)

)
O(1)

[GGPR13] O (|C| log |C|) O(1)

[?]

Table 2: Performance comparison of NIZK Arguments for Circuit SAT

All of the arguments in the table are SNARKs that rely on strong assumptions
and bilinear pairings. In each case, the size of the argument is a constant number
of elements in a suitable bilinear group.
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