Worked Example for the Special Number Field Sieve

Jonathan Bootle

University College London

This document gives a worked example of a discrete logarithm computation using the Special Number Field Sieve algorithm, following a similar strategy to those given in [Gor93] and [Sch93].

1 Goal

Let p = 1019, q = 509. These are both primes, and p = 2q + 1. Let g = 277, h = 487, so that g generates the subgroup of order q inside $\mathbb{Z}/p\mathbb{Z}$.

Problem Compute x such that $g^x = h \mod p$.

2 Polynomial Choice

First, we will choose a monic polynomial f with small coefficients, which is irreducible over \mathbb{Q} . By Gauss' Lemma, it will be sufficient to check irreducibility over \mathbb{Z} . A integer polynomial is called primitive if the greatest common divisor of its coefficients is 1.

Theorem 1 (Gauss' Lemma). A non-constant polynomial in $\mathbb{Z}[X]$ is irreducible in $\mathbb{Z}[X]$ if and only if it is both irreducible in $\mathbb{Q}[X]$ and primitive in $\mathbb{Z}[X]$.

We choose d = 2 and set $m = 31 \approx p^{1/d}$. Next, we produce f of degree d by expressing p in base m, which ensures that none of the coefficients of f are greater than m, and hence quite small modulo p. There are many other methods of producing f using the LLL algorithm and other techniques.

 $p = m^2 + m + 27,$ $f(X) = X^2 + X + 27$

We must also check that f is irreducible. Some methods for checking irreducibility over \mathbb{Z} involve changing variables, Eisenstein's Criterion, and brute force. In this case, we are lucky, because f(m) is prime, and we can apply Cohn's Irreducibility Criterion. Otherwise, since f is quadratic, we can simply note that it has no rational roots.

Theorem 2 (Generalisation of Cohn's Irreducibility Criterion). [Bri] Assume that $m \ge 2$ is a natural number, and $f(X) = a_k X^k + a_{k-1} X^{k-1} + \dots + a_1 X + a_0$, with $0 \le a_i \le m - 1$. If f(m) is a prime number then f(X) is irreducible in $\mathbb{Z}[X]$. Also, note that the discriminant of f is -107, which is coprime with q. The roots of f are given by $\alpha_{\pm} = \frac{-1 \pm \sqrt{-107}}{2}$. Write $\alpha = \alpha_{+}$. We use g(X) = X - m.

3 Finding the Factor Bases

We set B = 15 to be the smoothness bound for both our rational and algebraic factor bases. According to Theorem 3.1.7 in Mathew Brigg's thesis, we have the following correspondence.

Theorem 3. [Bri98] Let f be a monic, irreducible polynomial with integer coefficients and $\alpha \in \mathbb{C}$ a root of f. The set of pairs (r, p) where p is a prime integer and $r \in \mathbb{Z}/p\mathbb{Z}$ with $f(r) = 0 \mod p$ is in bijective correspondence with the set of all first degree prime ideals of $\mathbb{Z}[\alpha]$.

Therefore, we store the primes in the rational factor basis in the form $(m \mod p_i, p_i)$, and the primes in the algebraic factor basis in the form (r, p_i) for the roots r that we find.

Our rational factor basis is

$$\{(1,2), (1,3), (1,5), (3,7), (9,11), (5,13)\}$$

To find our algebraic factor basis, we must attempt to factorise f modulo primes less than 15. We discover that f has no roots modulo 2, 5 and 7, so there are no prime ideals of norm 2, 5 or 7. We discover the following roots.

 $f(x) = 0 \mod 3 \text{ for } x = 0, 2 \mod 3$ $f(x) = 0 \mod 11 \text{ for } x = 2, 8 \mod 11$ $f(x) = 0 \mod 13 \text{ for } x = 3, 9 \mod 13$

Our algebraic factor basis is

 $\{(0,3), (2,3), (2,11), (8,11), (3,13), (9,13)\}$

4 Sieving

According to Theorem 3.1.9 in Mathew Brigg's thesis, we have the following correspondence.

Theorem 4. [Bri98] Given an element $\beta \in \mathbb{Z}[\alpha]$ of the form $\beta = a + b\alpha$ for coprime integers a and b and a prime ideal p of $\mathbb{Z}[\alpha]$, then we have $v_{\mathfrak{p}}(\beta) = 0$ if \mathfrak{p} is not a first degree prime ideal of $\mathbb{Z}[\alpha]$. Furthermore, if \mathfrak{p} is a first degree prime ideal of $\mathbb{Z}[\alpha]$ corresponding to the pair (r, p) as in Theorem 3.1.7, then $v_{\mathfrak{p}}(\beta) = v_p(N(\beta))$ if $a = -br \mod p$ and 0 otherwise. We proceed by computing a + bm and $N(a + b\alpha)$ for small integers a and b, and checking whether they are smooth. The theorem above gives us information about whether a particular choice of a and b will lead to a useful relation. For example, if a and b are coprime but do not satisfy at least one of the following conditions

> $a = -b \mod 2$, $a = -b \mod 3$ $a = -b \mod 5$, $a = -3b \mod 7$ $a = -9b \mod 11$, $a = -5b \mod 13$

then a + bm will not be divisible by any of the primes in the rational factor basis, and we will not obtain a useful relation. Similarly, if a and b are coprime but do not satisfy at least one of the following conditions

> $a = 0 \mod 3$, $a = -2b \mod 3$ $a = -2b \mod 11$, $a = -8b \mod 11$ $a = -3b \mod 13$, $a = -9b \mod 13$

then $N(a + b\alpha)$ will not be divisible by 3, 11 or 13, so $(a + b\alpha)$ will not be divisible by any of the prime ideals in the algebraic factor basis.

In order to get a useful relation, a and b must be coprime, and satisfy at least one of the first set of conditions, and at least one of the second set of conditions. Even then, a + bm or N(a + bm) might be divisible by a prime not in the factor basis, and hence might not be *B*-smooth.

The norm $N(a + b\alpha)$ can be computed as $N(a + b\alpha) = (-b)^d f(-a/b) = a^2 - ab + 27b^2$. In [FGHT16], the authors suggest that it could be advantageous to choose f with at least one real root. Intuitively, one reason for this is that if -a/b is close to a real root of f, then the norm is likely to be small, and perhaps then more likely to be smooth.

In the end, after trying many values of a and b, we end up with the following table of values.

a	b	a + bm	$N(a+b\alpha)$	-1	2.3	857	11	13	(0, 3)	(2,3)	(2, 11)	(8, 11)	(3, 13)	(9, 13)
1	-7	-216	1331	1	33	0 0	0	0	0	0	0	3	0	0
1	1	32	27	0	$5\ 0$	0 0 0	0	0	0	3	0	0	0	0
1	4	125	429	0	0.0	30	0	0	0	1	0	1	1	0
3	-1	-28	39	1	20	01	0	0	1	0	0	0	1	0
4	1	35	39	0	0.0) 1 1	0	0	0	1	0	0	0	1
8	7	225	1331	0	0 2	$2\ 2\ 0$	0	0	0	0	3	0	0	0
9	-1	-22	117	1	10	0 0 0	1	0	2	0	0	0	0	1
9	1	40	99	0	30	10	0	0	2	0	1	0	0	0
9	25	784	16731	0	40	0 2	0	0	2	0	0	1	0	2
26	-1	-5	729	1	$0 \ 0$	10	0	0	0	6	0	0	0	0
27	-2	-35	891	1	$0 \ 0$) 1 1	0	0	4	0	0	1	0	0
29	2	91	891	0	$0 \ 0$	01	0	1	0	4	1	0	0	0
35	-1	4	1287	0	20	0 0 0	0	0	0	2	1	0	0	1
37	-17	-490	9801	1	10	012	0	0	0	4	0	2	0	0

5 Schirokauer Maps

Write $\mathcal{O} = \mathbb{Z}[\alpha]$. Let $\Gamma = \{\gamma \in \mathcal{O} : N(\gamma) \neq 0 \mod q\}$. Let $\mathfrak{q}_1, \ldots, \mathfrak{q}_k$ be the prime ideals above q. Set $\epsilon_{\mathfrak{q}_j} = |(\mathcal{O}/\mathfrak{q}_j)^*|$. Set $\epsilon = \operatorname{lcm}\{\epsilon_{\mathfrak{q}_1}, \ldots, \epsilon_{\mathfrak{q}_k}\}$. Let $\{b_j\}_{j=1}^d$ be a \mathbb{Z} -basis for \mathcal{O} , so that $\{b_jq + q^2\mathcal{O}\}_{j=1}^d$ is a $\mathbb{Z}/q\mathbb{Z}$ -basis for

 $q\mathcal{O}/q^2\mathcal{O}$. Consider the map

$$\Gamma o q \mathcal{O}/q^2 \mathcal{O}$$

 $\gamma \mapsto (\gamma^{\epsilon} - 1) + q^2 \mathcal{O}$

Then any $(\gamma^{\epsilon} - 1) + q^2 \mathcal{O}$ can be written as $\sum_{j=1}^d \lambda_j(\gamma) b_j q + q^2 \mathcal{O}$. We must compute the values $\lambda_j(\gamma)$ - the Schirokauer maps - for each $\gamma = a + b\alpha$ in the table, and add columns containing these values.

Rationale If the value of each Schirokauer map is equal to zero, then γ is likely to be an lth power in \mathcal{O} . See [Sch93] or [Sch08] for more details.

We have q = 509, and can find the values of the $\epsilon_{\mathfrak{q}_i}$ for prime ideals \mathfrak{q}_i above q by factorising f modulo q, and applying Dedekind's Criterion.

Theorem 5 (Simplified Version of Dedekind's Criterion). Let α be a root of the irreducible polynomial $f \in \mathbb{Z}[X]$. Suppose that q does not divide the discriminant of f. If $\overline{f} = f \mod q$ has factorisation into irreducibles $\overline{f} =$ $\prod_{i=1}^{r} \bar{f}_{r}^{e_{r}} modulo q, then (q) factors into prime ideals as \mathfrak{p}_{1}^{e_{1}} \dots \mathfrak{p}_{r}^{e_{r}}, where \mathfrak{p}_{i} =$ $(p, f_i(\alpha)).$

See [KCo] for a more precisely stated version with a proof. We discover that

$$f(X) = (X - 129)(X - 379) \mod q$$

This implies that we have two prime ideals q_1 and q_2 above q, with

$$\epsilon_{\mathfrak{q}_1} = \epsilon_{\mathfrak{q}_2} = q - 1$$

Therefore, $\epsilon = q - 1$.

How might we actually compute the Schirokauer maps? Using computer algebra software like SAGE, you can simply set up the ring $\mathbb{Z}[\alpha]$ and do the computation in this ring, modulo $q^2\mathbb{Z}[\alpha]$. If you struggle to think about number rings, or are using a more basic package with only integers and modular arithmetic operations, you might do as follows.

To see how γ^{ϵ} might be computed, create a matrix M_{γ} which represents multiplication by γ .

For example, $\{1, \alpha\}$ is a basis for \mathcal{O} , and $f(\alpha) = \alpha^2 + \alpha + 27 = 0$. Then

$$(a+b\alpha)(x+y\alpha) = ax - 27by + (ay+bx-by)\alpha$$

We can write this as a linear map.

$$M_{\gamma}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}a & -27b\\b & a-b\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}ax-27by\\ay+bx-by\end{pmatrix}$$

Now, $(M_{\gamma})^{\epsilon} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ represents γ^{ϵ} , so

$$(M_{\gamma})^{\epsilon} \begin{pmatrix} 1\\ 0 \end{pmatrix} - \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

represents $\gamma^{\epsilon} - 1$. Doing this computation modulo q^2 gives the vector $\begin{pmatrix} \lambda_1(\gamma)q\\ \lambda_2(\gamma)q \end{pmatrix}$ and dividing by q gives the values of the Schirokauer maps.

Following either of these methods allows us to augment our table with the values of the Schirokauer maps.

a	b	a + bm	$N(\gamma)$	-1	2.3	57	11	13	(0, 3)	(2,3)	(2, 11)	(8, 11)	(3, 13)	(9, 13)	$\lambda_1(\gamma)$	$\lambda_2(\gamma)$
1	-7	-216	1331	1	$3 \ 3$	$0 \ 0$	0	0	0	0	0	3	0	0	422	245
1	1	32	27	0	$5\ 0$	$0 \ 0$	0	0	0	3	0	0	0	0	276	163
1	4	125	429	0	$0 \ 0$	$3\ 0$	0	0	0	1	0	1	1	0	119	197
3	-1	-28	39	1	20	$0\;1$	0	0	1	0	0	0	1	0	433	346
4	1	35	39	0	$0 \ 0$	$1 \ 1$	0	0	0	1	0	0	0	1	87	163
8	7	225	1331	0	$0\ 2$	$2\ 0$	0	0	0	0	3	0	0	0	177	264
9	-1	-22	117	1	$1 \ 0$	$0 \ 0$	1	0	2	0	0	0	0	1	240	0
9	1	40	99	0	30	$1\ 0$	0	0	2	0	1	0	0	0	304	149
9	25	784	16731	0	40	0.2	0	0	2	0	0	1	0	2	206	360
26	-1	-5	729	1	$0 \ 0$	$1\ 0$	0	0	0	6	0	0	0	0	43	326
27	-2	-35	891	1	$0 \ 0$	$1 \ 1$	0	0	4	0	0	1	0	0	461	34
29	2	91	891	0	$0 \ 0$	$0\;1$	0	1	0	4	1	0	0	0	427	475
35	-1	4	1287	0	20	$0 \ 0$	0	0	0	2	1	0	0	1	238	475
37	-17	-490	9801	1	$1 \ 0$	$1\ 2$	0	0	0	4	0	2	0	0	310	211

6 Linear Algebra

This is a final step, where we try to use the relations that we have collected to compute the discrete logarithm of h with respect to g. We must introduce entries corresponding to h into our table, and create a vector corresponding to g. Unfortunately, neither g nor h is B-smooth.

To fix this, I have chosen random values of R and S which result in $H = g^R h$ and $G = g^S$ which are *B*-smooth. Now, computing the discrete logarithm of Hwith respect to G allows us to solve our original problem. For example, taking R = 187 and S = 299, we have $H = 625 = 5^4$ and $G = 33 = 3 \cdot 11$.

Form a vector \mathbf{v}_H which consists of the exponents used when expressing H in terms of our rational factor basis, with all other entries zero. Do the same for \mathbf{v}_G . In this case, we have

$$\mathbf{v}_H = (0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$$

$$\mathbf{v}_G = (0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)$$

Also, create a vector $\mathbf{v}_{a,b}$ corresponding to the entries for the rational factor basis, algebraic factor basis, and λ values for each pair of a and b values in the table. For example

$$\mathbf{v}_{1,-7} = (1, 3, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 422, 245)$$

Form the matrix A consisting of columns \mathbf{v}_G , $\mathbf{v}_{1,-7}$, $\mathbf{v}_{1,1}$, ..., $\mathbf{v}_{37,-17}$. We will then try to find a vector \mathbf{x} which solves the matrix equation $A\mathbf{x} = -\mathbf{v}_H$ modulo q.

															、		/ \	
(0	1	0	0	1	0	0	1	0	0	1	1	0	0	1		$\begin{pmatrix} 0 \end{pmatrix}$	
	0	3	5	0	2	0	0	1	3	4	0	0	0	2	1		0	
l	1	3	0	0	0	0	2	0	0	0	0	0	0	0	0		0	
	0	0	0	3	0	1	2	0	1	0	1	1	0	0	1		505	
	0	0	0	0	1	1	0	0	0	2	0	1	1	0	2		0	
	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0		0	
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0		0	
	0	0	0	0	1	0	0	2	2	2	0	4	0	0	0	$\mathbf{x} =$	0	$\mod 509$
	0	0	3	1	0	1	0	0	0	0	6	0	4	2	4		0	
	0	0	0	0	0	0	3	0	1	0	0	0	1	1	0		0	
l	0	3	0	1	0	0	0	0	0	1	0	1	0	0	2		0	
	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0		0	
	0	0	0	0	0	1	0	1	0	2	0	0	0	1	0		0	
	0	422	276	119	433	87	177	240	304	206	43	461	427	238	310		0	
ſ	0	245	163	197	346	163	264	0	149	360	326	34	475	475	211		(0)	

Note The matrix A is relatively sparse, and the most entries are small with respect to q, except for the last two rows. Therefore, special techniques for sparse linear algebra should be used to find \mathbf{x} .

We find that

 $\mathbf{x} = (76, 102, 356, 230, 279, 438, 318, 433, 64, 328, 50, 154, 0, 0, 0)$

is a solution. Hence, it is likely that $H = G^{-76} \mod p$. Substituting in $H = g^R h$ and $G = g^S$, we find that $h = g^{-76S-R \mod q} = g^{503} \mod p$.

References

Bri.	On an irreducibility theorem of a. cohn. https://cms.math.ca/openaccess/
	cjm/v33/cjm1981v33.1055-1059.pdf. Accessed: 2017-03-17.
Bri98.	M. E. Briggs. An Introduction to the General Number Field Sieve An Intro-
	duction to the General Number Field Sieve. 1998.
FGHT16.	J. Fried, P. Gaudry, N. Heninger, and E. Thomé. A kilobit hidden SNFS
	discrete logarithm computation. Eprint, (September):1, 2016.
Gor93.	D. Gordon. Discrete Logarithms in $GF(P)$ Using the Number Field Sieve.
	SIAM Journal on Discrete Mathematics, (1):1, 1993.
KCo.	Math 154: Dedekind's factorization criterion. http://math.stanford.edu/
	~conrad/154Page/handouts/dedekindcrit.pdf. Accessed: 2017-03-17.
Sch93.	O. Schirokauer. Discrete logarithms and local units Transactions of the
	Royal Society of, 1993.
Sch08.	O. Schirokauer. The impact of the number field sieve on the discrete loga-
	rithm problem in finite fields. Algorithmic Number Theory, 44:397, 2008.

7