Newton's Law of Cooling:
The rate of change of the temperature of a body is proportional to the difference in temperature between the body and its surroundings.

Temperature of body \(T(t) \) dependent variable
time \(t \) independent variable
Temperature of surroundings \(T_0 \) constant

\[
\frac{dT}{dt} \propto T - T_0
\]

\[
\frac{dT}{dt} = -k(T - T_0), \quad k > 0
\]

Define a derivative of \(f(x) \) wrt \(x \)

\[
\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

Right and left hand derivatives must be equal for \(f \) to be differentiable

\[
\lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}
\]

E.g. \(f(x) = |x| \) not differentiable at \(x = 0 \)

\[
\frac{df}{dx} = f'(x) = \frac{d}{dx} f(x)
\]

\[
\frac{d}{dx} \left(\frac{df}{dx} \right) = \frac{d^2f}{dx^2} = f''(x) = f^{(2)}(x)
\]

Note: \(f'(2x) \) means \(\frac{df}{dx} \) with \(y = 2x \), \(\frac{dx}{dy} = \frac{1}{2} \frac{d}{dy} \left(\frac{d}{dx} \right) \)
\[f(x) = o \left[g(x) \right] \quad \text{as } x \to x_0 \]

If \(\lim_{x \to x_0} \frac{f}{g} = 0 \)

E.g. \(x = o \left(\frac{1}{x} \right) \quad \text{as } x \to 0 \)
\[\frac{1}{x} = o \left(x \right) \quad \text{as } x \to \infty \]

\[f(x) = O \left[g(x) \right] \quad \text{as } x \to x_0 \]

"in of order"

If \(\frac{f(x)}{g(x)} \) is bounded as \(x \to x_0 \)

Then \(x = O(1) \quad \text{as } x \to 0 \)
\[x = O \left(\frac{1}{x} \right) \quad \text{as } x \to 0 \]

Note \(f(x) = o \left[g(x) \right] \Rightarrow f(x) = O \left[g(x) \right] \) but not vice versa.

Tangent line at \(x_0 \)

\[
\frac{df}{dx} \bigg|_{x_0} = \frac{f(x_0 + h) - f(x_0)}{h} + \frac{o(h)}{h}
\]

\[f(x_0 + h) = f(x_0) + h \frac{df}{dx} \bigg|_{x_0} + o(h) \]

Equation of tangent line at \(x_0 \) of \(y = f(x) \)

Replace \(x \) by \(x_0 + h \)

\[y(x) = y_0 + m \left(x - x_0 \right) \]
\[m = \frac{df}{dx} \bigg|_{x_0} = \frac{df}{dx} (x_0) \]
Recap:
1) \(f(x) = \frac{d}{dx} \left[g(x) \right] \) as \(x \to x_0 \)
\(\Rightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \)

ii) \(f(x) = O \left[g(x) \right] \) as \(x \to x_0 \)
\(\Rightarrow \frac{f(x)}{g(x)} \) remains bounded

iii) \(f(x_0 + h) = f(x_0) + h \frac{df}{dx} \bigg|_{x_0} + o(h) \)

Chain rule

Consider \(f(x) = F \left[g(x) \right] \)
\(\frac{df}{dx} = \lim_{h \to 0} \frac{F[g(x+h)] - F[g(x)]}{h} \)

\(= \lim_{h \to 0} \frac{1}{h} \left[F[g(x)] + h \frac{dg}{dx} + o(h) \right] - F[g(x)] \)

\(= \lim_{h \to 0} \frac{1}{h} \left[F[g(x)] + \left(h \frac{dg}{dx} + o(h) \right) F'[g(x)] + o(h) - F[g(x)] \right] \)

\(= \lim_{h \to 0} \left(\frac{dg}{dx} \times F'[g(x)] + o(h) \right) = \frac{d}{dx} \times F'[g(x)] \)

relied on finite \(\frac{dg}{dx} \) at the point in question and also \(\frac{dF}{dF} \) being finite. In other words, both the inner and outer functions must be differentiable.

\(\frac{d}{dx} \left[\sin(x^2 - x + 2) \right] = \cos(x^2 - x + 2) \times (2x - 1) \)

Product Rule

\(f(x) = u(x) \cdot v(x) \), \(\frac{df}{dx} = u'v + uv' \)
Leibniz's rule

\[
\frac{d^n}{dx^n}(uv) = \sum_{k=0}^{n} \binom{n}{k} u^{n-k} v^k \frac{d^k}{dx^k}v
\]

where \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \)

Taylor Series

Recall \(f(x+h) = f(x) + h f'(x) + o(h) \)

\[
f(x+h) = f(x) + h f'(x) + \frac{h^2}{2} f''(x) + \cdots + \frac{h^n}{n!} f^{(n)}(x) + E_n
\]

N.B. \(f \) must be \(n+1 \) times differentiable \(\Rightarrow \) (in complex plane, later)

then Taylor's Theorem states that

\(E_n = O(h^{n+1}) \) as \(h \to 0 \)

(20) \(E_n = o(h^n) \)

A Taylor series provides a local approximation to a function.

Contrast with a global approximation e.g. Fourier Series
Differential Equations 2

Alternative form

\[f(x) = f(x_0) + (x - x_0) f'(x_0) + \ldots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + E_n \]

Taylor series of \(f(x) \) about the point \(x = x_0 \). A local approximation of the function near \(x_0 \).

Finding coefficients

WLOG, consider an expansion of \(f(x) \) about \(x = 0 \)

\[f(x) = a_0 + a_1 x + a_2 x^2 + \ldots \]

\[f'(x) = a_1 + 2a_2 x + \ldots \]

\[f''(x) = 2a_2 + 3 \cdot 2a_3 x + \ldots \]

\[f(0) = a_0 \]

\[f'(0) = a_1 \]

\[f''(0) = 2a_2 \]

\[f'''(0) = 3 \cdot 2a_3 \]

\[f^{(n)}(0) = n! \cdot a_n \]

\[a_n = \frac{f^{(n)}(0)}{n!} \quad \text{QED} \]

L'Hopital's Rule

Suppose \(f(x) \) and \(g(x) \) are differentiable at \(x = x_0 \) and \(\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \)

The limit \(\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \), provided \(g'(x) \neq 0 \)

From Taylor Series (Linear part)

\[f(x) = f(x_0) + (x - x_0) f'(x_0) + o(x - x_0) \]

\[g(x) = g(x_0) + (x - x_0) g'(x_0) + o(x - x_0) \]

\[\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x_0)}{g'(x_0)} \]

3
Proof of L'Hopital's Rule

If f and g are continuous, differentiable at x_0, $g'(x) \neq 0$

\[
\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{g(x) - g(x_0)}{x - x_0}} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}
\]
Chain Rule: \(\frac{d}{dx} f(g(x)) = f'(g(x))g'(x) \)

Product Rule: \(\frac{d}{dx} (uv) = u v' + v u' \)

Taylor Series:
\[
 f(x) = f(x_0) + (x-x_0)f'(x_0) + \frac{(x-x_0)^2}{2!}f''(x_0) + \cdots + (x-x_0)^n \frac{f^{(n)}(x_0)}{n!} + O[(x-x_0)^{n+1}]
\]

L'Hopital's Rule:
\[
 \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \quad \text{if } \lim f = \lim g = 0 \quad \text{and ratio limits exist}
\]

Integration:
An integral is a sum.
\[
 \int_a^b f(x) \, dx = \lim_{\Delta x \to 0} \sum_{n=0}^{N-1} f(x_n) \Delta x
\]

Area under the graph from \(x_n \) to \(x_{n+1} \):
\[
 \Delta A_n = f(x_n) \Delta x + O(\Delta x^2)
\]

Provided \(f \) is differentiable at \(x_n \)

Error in area:
\(O(\Delta x^2) \)

\(\bullet \) Area - error, \(O(x^3) \) using Taylor Series

Area from \(a \) to \(b \):
\[
 \lim_{N \to \infty} \left[\sum_{n=0}^{N-1} f(x_n) \Delta x + O(N \Delta x^2) \right]
\]

Note: \(\Delta x = \frac{b-a}{N} \), \(N = \frac{b-a}{\Delta x} \) \(O(N \Delta x^2) = O(\Delta x) \)

\[
 \int_a^b f(x) \, dx
\]
Fundamental Theorem of Calculus

\[\int_a^x f(t) \, dt \]

\[
\frac{dF}{dx} = \lim_{h \to 0} \frac{1}{h} \left[\int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt \right]
\]

\[
= \lim_{h \to 0} \frac{1}{h} \left[f(x)h + O(h^2) \right]
\]

Wrong notation:

Notation \(F(x) = \int_a^x f(x) \, dx \int_0^x f(t) \, dt \)

Similarly:

\[
\frac{d}{dx} \int_a^x f(t) \, dt = -f(x)
\]

\[
\frac{d}{dx} \int_a^x f(t) \, dt = f(g(x)) g'(x)
\]

Integration by substitution

Integration is an act of recognition. If the integrand contains a function of a function, it can sometimes aid recognition to substitute for the outer function. Especially helpful if we can recognize the structure of the chain rule.

\[
\int 1 - 2x \sqrt{5x - x^2} \, dx = x - x^2
\]

\[
\frac{du}{\sqrt{5x - x^2}} \quad du = (1 - 2x) \, dx
\]

\[
= \int \frac{du}{\sqrt{5x - x^2}} = 2\sqrt{5x - x^2} + C
\]

Trigonometric substitution
Differential Equations

Trigonometric Substitutions

Useful Identities

<table>
<thead>
<tr>
<th>Substitution</th>
<th>(x = \sin \theta)</th>
<th>(dx = \cos \theta , d\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cos^2 \theta + \sin^2 \theta = 1)</td>
<td>(\frac{1}{1-x^2})</td>
<td>(1+x^2)</td>
</tr>
<tr>
<td>(1 + \tan^2 \theta = \sec^2 \theta)</td>
<td>(\sqrt{1+x^2})</td>
<td>(\frac{\sqrt{x^2-1}}{x})</td>
</tr>
<tr>
<td>(\cosh^2 u - \sinh^2 u = 1)</td>
<td>(\sqrt{1+x^2})</td>
<td>(\frac{\sqrt{x^2-1}}{x})</td>
</tr>
<tr>
<td>(1 - \tanh^2 u = \text{sech}^2 u)</td>
<td>(\sqrt{1+x^2})</td>
<td>(\frac{\sqrt{x^2-1}}{x})</td>
</tr>
</tbody>
</table>

\[
\int \frac{2x}{x^2-1} \, dx = \int \frac{2x}{1+x^2} \, dx = \int \frac{1}{1-x(1-x)} \, dx
\]

\[
x-1 = \sin \theta, \quad x = 1 + \sin \theta
\]

\[
dx = \cos \theta \, d\theta
\]

\[
x-1 = \sin \theta, \quad x = 1 + \sin \theta
\]

\[
dx = \cos \theta \, d\theta
\]

\[
= \frac{1}{2} (x-1)^2 + \frac{1}{2} \arcsin(x-1) + C
\]

By Parts

<table>
<thead>
<tr>
<th>Product rule</th>
<th>((uv)' = u'v + uv')</th>
</tr>
</thead>
</table>

\[
\int uv' \, dx = \int (uv)' - u'v \, dx = uv - \int u'v \, dx
\]

\[
\text{e.g.}, \quad \int xe^{-x} \, dx\]

\[
u(x) = x, \quad u'(x) = e^{-x}
\]

\[
\int xe^{-x} \, dx = \left[xe^{-x} \right]_0^\infty - \int e^{-x} \, dx
\]

\[
= e^{-x} \bigg|_0^\infty - \int e^{-x} \, dx = 1
\]

\[
\int \ln x \, dx\]

\[
u(x) = \ln x, \quad u'(x) = \frac{1}{x}
\]

\[
v = x
\]

\[
\text{or inverse sin x + C}
\]

\[
\frac{1}{x} \ln x - \int \frac{1}{x} \, dx = x \ln x - x + C
\]
Functions of several variables

Partial differentiation:
Consider a function \(f(x, y) \)
- e.g. height of terrain / hill
 - pressure (temperature)
 - density of a gas

\[\begin{align*}
\text{function of east/west/north/south coordinates} & = f(\text{temp, pressure}) \\
\end{align*}\]

Represent such functions either on a graph:

\[\begin{align*}
\text{or as a contour plot} \\
\text{contours, curves along which} \quad f = \text{constant}
\end{align*}\]

Q: What is the slope of a hill?
A: Depends which direction you are facing.

Begin by finding the slope in directions parallel to the axes.
The partial derivative of \(f(x, y) \) wrt \(x \)
\[\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}\]

Similarly \(\frac{\partial f}{\partial y} \) wrt \(y \)
\[\frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}\]

Calculating partial derivatives:
\(f(x, y) = x^2y + y^3 + e \)
\[\begin{align*}
\frac{\partial f}{\partial x} & = 2xy + y^2e \\
\frac{\partial f}{\partial y} & = 3x^2 + 2xye \\
\end{align*}\]

Can also find 2nd partial derivatives
\[
\frac{d^2 f}{dx^2} = 2 + y^4 e^{xy^2} \\
\frac{d^2 f}{dy^2} = 6y + 2xe^{xy^2} + 4x^2 y^2 e^{xy^2}
\]

\[
\frac{d^2 f}{dx dy} = \frac{d}{dx} \left(\frac{df}{dy} \right) \\
= 2ye^{xy^2} + 2xy^3 e^{xy^2}
\]

\[
\frac{d^2 f}{dy dx} = 2ye^{xy^2} + 2xy^3 e^{xy^2}
\]

It is a general rule (in Euclidean space) that \(\frac{d^2 f}{dx dy} = \frac{d^2 f}{dy dx} \).

\text{NB}

To be careful, we indicate which variable or variables are being held constant, but if no indication we assume everything is constant except the variable we are differentiating with respect to.

e.g. \(f = f(x, y, z) \)

\[\frac{df}{dx} = \frac{df}{dx}_{y, z} \neq \frac{df}{dy} \text{ in which } z \text{ may vary} \]

Alternative notation \(f_x = \frac{df}{dx} \quad f_{xy} = \frac{d^2 f}{dy dx} \)

\text{Chain rule}

\[
f' = f(x + 5x, y + 5y) - f(x, y) \\
= f(x + 5x, y + 5y) - f(x + 5x, y) + f(x + 5x, y) \\
\]

\[
f' = 5 \frac{df}{dy}(y + 5y) + o(5y) \\
+ 5 \frac{df}{dy}(y) + o(5x)
\]
Differential Equations

\[\frac{df}{dy} (x, y) + o(5x) \int sy + o(5y) \]
\[+ \frac{df}{dx} (x, y) s\hat{x} + o(5\hat{x}) \]

(*) \(df = \frac{df}{dx} (x, y) s\hat{x} + \frac{df}{dy} (x, y) s\hat{y} + o(5\hat{x}, 5\hat{y}) \)

Take limit as \(s\hat{x} \to 0, s\hat{y} \to 0 \)

\(df = \frac{df}{dx} dx + \frac{df}{dy} dy \)

This is the chain rule in differential form. We understand it as a shorthand for (*) knowing that we shall either sum terms or divide by another infinitesimal quantity before taking the limit.

E.g. \(\int \int df = \int \int \frac{df}{dx} dx + \int \int \frac{df}{dy} dy \)

Along a path, \((x, y) = [x(t), y(t)] \)

where \(t \) is a parameter along the path (e.g. time)

\(f(x, y) = f[x(t), y(t)] \)

\[\frac{df}{dt} = \lim_{\rho \to 0} \frac{df}{dt} = \lim_{\rho \to 0} \left[\frac{df}{dx} \frac{dx}{dt} + \frac{df}{dy} \frac{dy}{dt} + o\left(\frac{5x, 5y}{\rho}\right) \right] \]

\[\frac{df}{dt} = \frac{df}{dx} \frac{dx}{dt} + \frac{df}{dy} \frac{dy}{dt} \]

Chain rule
Differential Equations 5

Recap
\[
\frac{df}{dy} (x + ax, y) \Delta y = \left[\frac{df}{dy} (x, y) + \frac{df}{dx} \Delta x + o(\Delta x) \right] \Delta y
\]

\[x(t), y(t)\]

Chain Rule

Short for
\[
\frac{df}{dx} = \frac{df}{dx} \Delta x + \frac{df}{dy} \Delta y
\]

Along a path:
\[
\frac{df}{dt} = \frac{df}{dx} \frac{dx}{dt} + \frac{df}{dy} \frac{dy}{dt}
\]

Path can also be given
\[D = y(x)\]

\[f = f \left[x(t), y(x) \right]\]

Change of variables:
\[e.g. x = (r, \theta), \ y = (r, \theta)\]

\[f = f \left[x(1, \theta), y(1, \theta) \right]\]

\[\frac{df}{dr} |_{r=1} = \frac{df}{dx} \frac{dx}{dr} |_{r=1} + \frac{df}{dy} \frac{dy}{dr} |_{r=1}\]

Similarly
\[\frac{df}{d\theta} |_{\theta=0} = \frac{df}{dx} \frac{dx}{d\theta} |_{\theta=0} + \frac{df}{dy} \frac{dy}{d\theta} |_{\theta=0}\]

Implicit Differentiation:
\[F(x, y, z) = \text{constant}\]

It implicitly defines
\[z = z(x, y)\]

or\[x = x(y, z)\]

or\[y = y(x, z)\]

\[e.g. xy^2 + yz^2 + z^5x = 5\]

Solve for \(x\):
\[x = \frac{5 - yz^2}{y^2 + zs}\]

... explicitly

Could also find \(y = (x, z)\) by solving the quadratic \(\Rightarrow\) function with two branches but we cannot find \(z = z(x, y)\), would have to solve a quartic

Find \(\frac{dz}{dx}\) by differentiating w.r.t. \(x\), holding \(y\) constant:
\[y^2 + 2yz + 5z^4x \cdot \frac{dz}{dx} |_{y=0} + z^5 = 0\]

\[\frac{dz}{dx} |_{y=0} = -\frac{z^5}{y^2 + z^5x}\]
In general, think of \(F(x, y, z(x, y)) = \) constant

Chain rule in differential form:
\[
dF = \frac{\partial F}{\partial x} \, dx + \frac{\partial F}{\partial y} \, dy + \frac{\partial F}{\partial z} \, dz
\]

\[
\frac{\partial F}{\partial x} \bigg|_y = \frac{\partial F}{\partial x} \frac{\partial x}{\partial x} \bigg|_y + \frac{\partial F}{\partial y} \frac{\partial y}{\partial x} \bigg|_y + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} \bigg|_y = 0
\]

\[
\frac{\partial F}{\partial x} \bigg|_y = \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0
\]

\[
\frac{\partial z}{\partial x} \bigg|_y = -\frac{\frac{\partial F}{\partial y} \frac{\partial z}{\partial x} \bigg|_y}{\frac{\partial F}{\partial x} \bigg|_y} = -\frac{\frac{\partial z}{\partial x} \bigg|_y}{\frac{\partial F}{\partial x} \bigg|_y}
\]

Similarly:
\[
\frac{\partial z}{\partial y} \bigg|_x = -\frac{\frac{\partial z}{\partial x} \bigg|_y}{\frac{\partial z}{\partial y} \bigg|_x}
\]

Note: Normal rules apply provided the same variables are being held constant.
\[(x, y) \rightarrow (r, \theta)\]

\[
\frac{\partial r}{\partial x} = \frac{\partial x}{\partial r} \quad \text{because} \quad \frac{\partial r}{\partial x} \bigg|_y \neq \frac{\partial x}{\partial r} \bigg|_y
\]

But \(\frac{\partial r}{\partial x} \bigg|_y = \frac{\partial x}{\partial r} \bigg|_y \quad \checkmark \)

Differentiation of an integral: with respect to a parameter
Consider a family of functions \(f(x, c) \)

Define a function \(I(b, c) = \int_{0}^{b} f(x, c) \, dx \)

\[
\frac{\partial I}{\partial c} \bigg|_{c} = f(b, c) \quad \text{by fundamental theorem of calculus}
\]

\[
\frac{\partial I}{\partial b} \bigg|_{b} = \lim_{\Delta c \to 0} \frac{1}{\Delta c} \left[\int_{0}^{b} f(x, c+\Delta c) \, dx - \int_{0}^{b} f(x, c) \, dx \right]
\]
\[
\lim_{n \to 0} \int_{a}^{b} \frac{f(x, c+sc) - f(x, c)}{sc} \, dx
\]

Consider:
\[
I[b(x), c(x)] = \int_{a}^{b} f[y, c(x)] \, dy
\]
\[
I(b) = \int_{0}^{b} e^{-ax^{2}y} \, dy
\]
\[
\frac{dI}{dx} = f(b, c) \frac{db}{dx} + \frac{dc}{dx} \int_{0}^{b} \frac{f(y, c)}{ac} \, dy
\]

\[
\frac{dI}{dx} = e^{-x^{3}} + \int_{0}^{x} -2xy e^{-x^{2}y} \, dy
\]
Differential Equations

\[\int b(x), c(x) \right] = \int f[y, c(x)] dy \]

\[
\frac{dT}{dx} = \frac{dT}{db} \frac{db}{dx} + \frac{dT}{dc} \frac{dc}{dx}
\]

\[
= f(b, c) \frac{db}{dx} + \frac{dc}{dx} \int_0^b \frac{df}{dc} \frac{dy}{y} dy
\]

\[
i) I = \int e^{-x^2} dx, \quad \frac{dI}{dx} = e^{-x^2}
\]

\[
ii) I = \int e^{-x^2} dx, \quad \frac{dI}{dx} = \int_0^1 -x^2 e^{-x^2} dx
\]

\[
iii) I = \int e^{-x^2} dx
\]

Exponential Function \(f(x) = a^x \), \(a > 0 \), \(a \) is constant

\[
\frac{df}{dx} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \to 0} a^x \frac{a^h - 1}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h} = a^x \cdot \text{constant} = f'(0)
\]

\[
\frac{df}{dx} = f(x) \text{ where } f = \lim_{h \to 0} \frac{a^h - 1}{h} = \text{constant} = f'(0)
\]
Define \(f(x) = \exp(x) = e^x \) by \(\frac{df}{dx} = f(x) \) with \(f(0) = 1 \).

Proof that \(e = \lim_{k \to \infty} (1 + \frac{1}{k})^k \) is on example sheet.

\[y = a^x = e^{x \ln a}, \text{ then } \frac{dy}{dx} = \ln a \cdot e^{x \ln a} = \ln a \cdot e^x \]

\[\lambda = \ln a \]

First order, linear differential equations.

\[\frac{d}{dx} (e^{\lambda x}) = \lambda (e^{\lambda x}) \]

\(e^x \) is an eigenfunction of the differential operator \(\frac{d}{dx} \).

The functional form is unchanged by the operator, only the magnitude is changed.

Any linear homogeneous ordinary differential equation with constant coefficients has solutions of the form \(e^{\lambda x} \).

E.g. \(5y' - 3y = 0 \)

Linear, the dependent variable appears only linearly.

\[x y' + y = e^x \]

is linear,

\[y y' + xy = 5 \]

is non-linear.

Homogeneous \(y = 0 \) is a solution.

Constant Coefficients: independent variable does not appear explicitly.

First order. No higher derivatives than 1st are involved.

\[y = e^{\lambda x} \]

In example \(5y' - 3y = 0 \), \(\lambda = \frac{3}{5} \)

As \(e^{\lambda x} \neq 0 \) so \(y = e^{3x} \) is a solution.
Differential Equations

1) Because the equation is linear and homogeneous, any multiple of a solution is also a solution.
 \[y = Ae^{\frac{3}{5}x} \] is also a solution for any constant \(A \).

2) An \(n \)th order linear differential equation has (only) \(n \) independent solutions. Therefore \(y = Ae^{\frac{3}{5}x} \) is the most general solution to (1).

Can determine \(A \) by applying a boundary condition, i.e., \(y(x) \) at \(x = a \).

Discrete Equation

\[S_y' - 3y = 0, \quad y = y_0 \quad \text{at} \quad x = a \]

Approximate by \(\frac{S_{yn+1} - y_n}{h} = 3y_n \) with \(y(0) = y_0 \) and \(x_n = nh \) (compound interest formula).

\[y_{n+1} = (1 + \frac{3h}{5})y_n \]

Repeatedly \(y_n = (1 + \frac{3h}{5})^n y_0 \)

Take limit as \(n \to \infty \):

\[y(x) = \lim_{n \to \infty} y_0 \left(1 + \frac{3x}{5n} \right)^n \]

\[= y_0 e^{\frac{3x}{5}} \]
Differential Equations

Series solution

Try a solution of the form: \(y = \sum_{n=0}^{\infty} a_n x^n \)

\[y' = \sum_{n=0}^{\infty} a_n x^{n-1} \quad 5y' - 3y = 0 \]

\(5(xy') - 3xy = 0 \Rightarrow \sum a_n [5n - 3x]x^n = 0 \)

Coefficient of \(x^n \):

\(5n a_n - 3a_{n-1} = 0 \)

\(n = 0 \quad 0 \cdot a_0 = 0 \Rightarrow a_0 \) is arbitrary

\(n > 0 \)

\[a_n = \frac{3n}{5n} a_{n-1} = \frac{(3/5)^n}{n!} a_0 \]

\[y = a_0 \sum_{n=0}^{\infty} \frac{(\frac{3}{5})^n}{n!} x^n = a_0 e^{\frac{3}{5}x} \]

Forced equations - Inhomogeneous

1) Constant forcing \(5y' - 3y = 10 \)

Can spot a steady (equilibrium) solution: \(y = y_0 = -\frac{10}{3} \quad \Rightarrow \quad y_0' = 0 \)

Write \(y = y_p + y_c \)

\[y = -\frac{10}{3} + Ae^t \]

2) Eigenfunction forcing. In a radioactive rock, isotope \(A \) decays into isotope \(B \) at a rate proportional to the number, \(a \), of remaining nuclei of \(A \), and \(B \) decays to \(C \), at a rate proportional to the number \(b \), of remaining nuclei of \(B \).

\[\frac{da}{dt} = -ka a \quad \frac{db}{dt} = -kb b \]

\[\frac{da}{dt} + ka a = 0 \quad \frac{db}{dt} = -k_a a_0 e^{-kt} - k_b b \]

\[a = a_0 e^{-kt} \quad \frac{db}{dt} + k_b b = -k_a a_0 e^{-kt} \]

Note: forcing is an eigenfunction of the differential operator on the LHS by a particular integral:

\[b_0 = C e^{-kt} \Rightarrow -ka C + k_b C = k_a a_0 \Rightarrow C = \frac{k_a a_0}{k_b - k_a} \]

provided \(ka \neq k_b \)
Write \(b = b_0 + b_1 \)
\[
\frac{b_1}{k_b b_c} = 0 \\
\frac{b_c}{D_e} = 0
\]
\[
b = \frac{k_a}{k_b - k_a} a_0 e^{-k_a t} + D e^{-k_b t}
\]

Suppose \(b = 0 \) at \(t = 0 \)
\[
b = \frac{k_a}{k_b - k_a} a_0 \left(e^{-k_a t} - e^{-k_b t} \right)
\]
\[
\frac{b}{a} = \frac{k_a}{k_b - k_a} \left[1 - e^{(k_b - k_a)t} \right]
\]
This allows a rock to be dated from the relative proportions of certain isotopes.

Non-constant coefficients

General form: \(a(x) y' + b(x) y = c(x) \)

Divide by \(a(x) \) to get standard form: \(y' + p(x) y = f(x) \)

Multiply by \(A(x) \) so \(A(x) y' + \mu_0 y = \mu_0 f \)

\[
\mu_0 = \frac{\mu'}{\mu}, \quad \int \mu_0 \, dx = \int \frac{\mu'}{\mu} \, dx = \ln \mu
\]

\(A(my)' = A \mu f, \quad A - my = \int \mu f \, dx \) etc.

\(\text{e.g.} \quad xy' + (1-x)y = 1, \quad y' + (\frac{x}{x-1})y = \frac{1}{x} - x \)

If \(\mu = \exp \left(\int \frac{1}{x} - 1 \, dx \right) = e^{\ln x - x} = xe^{-x} \)

\[
(xe^{-x} y)' = e^{-x} \]

\[
x e^{-x} y = -e^{-x} + c \quad y = \frac{c - e^{-x}}{xe^{-x}} = -\frac{1}{x} + \frac{x}{e^x}
\]
Nonlinear First Order

In general, a first order ordinary differential equation has the form

$$ Q(x, y) \frac{dy}{dx} + P(x, y) = 0 $$

Separable Equations

The equation is separable if it can be manipulated into the form

$$ q(y) \, dy = p(x) \, dx $$

in which case, the solution can be found by integration

$$ \int q(y) \, dy = \int p(x) \, dx $$

E.g.,

$$ (6c^2y - 3y) \, \frac{dy}{dx} - 2x \, y^2 = 4x $$

$$ \frac{dy}{dx} = \frac{4x + 2xy^2}{x^2y - 3y} = \frac{2x(2+y^2)}{y(x^2-3)} $$

$$ \int \frac{y}{2+y^2} \, dy = \int \frac{2x}{x^2-3} \, dx $$

$$ \frac{1}{2} \ln(2+y^2) = \ln(x^2-3) + C $$

$$ (2+y^2)^{\frac{1}{2}} = A(x^2-3) $$

Exact Equations

$$ Q(x, y) \frac{dy}{dx} + P(x, y) = 0 $$

is an exact equation if and only if

$$ Q(x, y) \, dy + P(x, y) \, dx $$

is an exact differential of a function $f(x, y)$, i.e.,

$$ \exists f(x, y), df \neq P \, dx + Q \, dy $$

in which case, $df = 0$ from the differential equation, so $f = const.$

Suppose there exists such a function $f(x, y)$

Chain Rule

$$ df = \frac{df}{dx} \, dx + \frac{df}{dy} \, dy $$

$$ \frac{df}{dx} = P, \quad \frac{df}{dy} = Q $$

Note

$$ \frac{df}{dy} \frac{dy}{dx} = \frac{df}{dx} \frac{dy}{dx} = \frac{df}{dx} = P $$

$$ \frac{df}{dx} \frac{dy}{dx} = \frac{df}{dx} \frac{dy}{dx} = \frac{df}{dx} = P $$

$$ \frac{df}{dy} = \frac{df}{dx} $$
True (proof not given) that if \(\frac{\Delta P}{\Delta x} = \frac{\Delta Q}{\Delta y} \) throughout a simply connected domain \(D \) the Pdx + Qdy is an exact differential of a single valued function \(f(x, y) \) in \(D \).

Note

1. The reverse implication follows locally from the chain rule.
2. What is a simply connected domain? "A domain with no holes"

(a) Slice of Swiss cheese (b) A whole Swiss cheese

Example

\[
b (y - x) \frac{dy}{dx} + (2x - 3y^2) = 0
\]

\[
(2x - 3y^2) dx + b(y - x) dy = 0
\]

\[
p = 2x - 3y^2 \quad Q = b(y - x)
\]

\[
\frac{\partial P}{\partial y} = -6y \quad \frac{\partial Q}{\partial x} = -6y
\]

\[
\frac{\Delta f}{\Delta x} = 2x - 3y^2 \quad \frac{\Delta f}{\Delta y} = b(y - x) = -6xy + 6y
\]

\[
f = x^2 - 3xy^2 + g(y) \quad \Rightarrow \frac{\Delta f}{\Delta y} = -6xy + g'(y)
\]

\[
g = 2y^3 + C \quad f = x^2 - 3xy^2 + 2y^3 + C
\]
Solution of the equation is $f = \text{constant}$

$x^2 - 3xy^2 + 2y^3 + C = \text{constant}$

E.g. \(\frac{dy}{dt} = t(1 - y^2) \)

\[
\int \frac{1}{1 - y^2} \, dy = \int t \, dt
\]

\[
\tanh^{-1} y = \frac{1}{2} t^2 + C
\]

\[
y = \tanh \left(\frac{1}{2} t^2 + C \right)
\]

If we have an initial condition, we can determine A.

E.g. if $y(0) = 0$, $A = 1$.

\[
y = \frac{A - e^{-t^2}}{A + e^{-t^2}}
\]
Differential Equations

\[y' = t(1 - y^2) \], generally \[\frac{dy}{dt} = F(y, t) \]

Note first that \(y' = 0 \) where \(y = \pm 1 \) or \(t = 0 \). Note also that \(\frac{dy}{dt} > 0 \) for \(-1 < y < 1, t > 0\)
and negative for \(y < -1, y > 1, t > 0\)

Consider the contours of \(f \) which are called isoclines, of the differential equati
\[t \times (1 - y^2) = c \]
\[t = \frac{1 - y^2}{(1 + y)(1 - y)} \]

Note that as \(|y| \to \infty \), \(\frac{dy}{dt} \to -y^2 \)
\[\frac{dy}{y^2} = t \, dt \]
\[\frac{1}{y^2} \, t = \frac{1}{2} t^2 - 0 \]

Note if \(f(y, t) \) is single valued curves do not cross. \(y = \frac{t^2 - 0}{2} \), \(y = 1 \) is a stable attractor, \(y = -1 \) is an unstable attractor.

Equilibrium and stability
Fixed points (equilibrium points) are where \(\frac{dy}{dt} = 0 \) for all \(t \)
\[f(y, t) = 0 \] for all \(t \). In our example there are \(y = \pm 1 \).
We can see from the solution curves that as time increases, solutions converge towards \(y = +1 \), a stable fixed point but diverge from \(y = -1 \), an unstable fixed point.
Perturbation analysis - to determine stability and nature of solutions.

\[\frac{dy}{dt} = f(y, t), \quad y \text{ is a fixed point, i.e. } f(y, t) = 0 \]

Write \(y = a + \epsilon(t) \), \(\epsilon \) perturbation.

Substitute: \(\frac{d\epsilon}{dt} = f(a + \epsilon, t) \)

\[\frac{d\epsilon}{dt} = f(a, t) + \epsilon \frac{\partial f}{\partial y} (a, t) + O(\epsilon^2) \]

\[\Rightarrow \frac{d\epsilon}{dt} = [\frac{\partial f}{\partial y}]_a \epsilon \quad \text{linear equation} \]

In example \(f = t(1-y^2) \)

\[\frac{\partial f}{\partial y} = -2yt \]

Near \(y = 1 \), \(\epsilon = -2t \epsilon \)

\[\epsilon = E_0 e^{-t^2} \quad \Rightarrow \quad y = 1 \text{ is stable.} \]

This is true for sufficiently small \(E_0 \).

Near \(y = -1 \), \(\epsilon = 2t \epsilon \)

\[\epsilon = E_0 e^{t^2} \quad \Rightarrow \quad y = -1 \text{ grows to infinity} \quad \Rightarrow \quad y = -1 \text{ is unstable.} \]

Autonomous Systems

\[\dot{y} = f(y), \text{ independent of } t. \] Then, near a fixed point \(y = a \), \(f(a) = 0 \)

write \(y = a + \epsilon(t) \Rightarrow \epsilon = \frac{df}{dy}(a) \cdot \epsilon \quad \Rightarrow \epsilon = E_0 e^{k t} \)

Fixed point is stable or unstable according to whether \(\frac{df}{dy}(a) \) is +ve or -ve.

(stable if +ve, unstable if +ve)
Example - Chemical reaction kinetics.

\[\text{NaOH} + \text{HCl} \rightarrow \text{H}_2\text{O} + \text{NaCl} \]

\[\text{water} \]

\[\text{molea}_{a} \; \text{b} \; \text{c} \; \text{c} \]

Initially: \(a = a_0 \), \(b = b_0 \), \(c = 0 \)

If the reactants are in dilute solution (e.g. water) then the reaction rate is linear in both \(a \) and \(b \).

\[\frac{dc}{dt} = \lambda (ab) \quad \text{for some } \lambda \]

\[\frac{dc}{dt} = \lambda (a_0 - c)(b_0 - c) \]

\[\dot{y} = f(y) \]

\[y(t) = a + \varepsilon(t) \quad f(a) = 0, \text{ a fixed point} \]

\[\varepsilon = \frac{d\varepsilon}{dt} = \frac{dy}{dt} = f(a + \varepsilon) \rightarrow f(a) + \varepsilon \frac{df}{dy} a \]

\[\varepsilon = \frac{df}{dy} a \]

\[\Rightarrow \text{Stability for } \frac{df}{dy} a \rightarrow -\text{ve} \]

\[\text{Instability for } \frac{df}{dy} a \rightarrow +\text{ve} \]
Differential Equations

\[\text{Na}_2\text{OH} + \text{HCl} \rightarrow \text{H}_2\text{O} + \text{NaCl} \]

Initially

\[a_0 \quad b_0 \quad 0 \quad 0 \]

\[\frac{dc}{dt} = \lambda ab = \lambda (a_0 - c)(b_0 - c) = f(c) \]

We can plot \(\frac{dc}{dt} \) as a function of \(c \)

\[\frac{dc}{dt} = f \]

Determine the phase portrait. The dimension of the relevant phase space is equal to the order of the differential system.

Phase portrait

Arrows point in the direction of increasing \(t \). From the phase portrait we can see easily that \(c = a_0 \) is a stable fixed point, \(c = b_0 \) an unstable fixed point.

Exercise, show \(c = \frac{a_0 b_0}{b_0 - a_0 e^{-\lambda(b_0-a_0)t}} \)

Logistic equation - A simple model of population dynamics

Population \(y \), birth rate \(a \), death rate \(\beta \): \(\frac{dy}{dt} = (a - \beta) \cdot y \Rightarrow y = y_0 \cdot e^{(a-\beta)t} \)

Population increases or decreases exponentially depending whether birth rates exceed death rates.
Fighting for limited resources

Probability of some food being found $X \cdot Y$

same food being found by two individuals $X \cdot Y^2$

If food is scarce, then "fight to the death".

Death rate due to fighting $X \cdot Y^2$, $r = \alpha - \beta$

\[
\frac{du}{dt} = (\alpha - \beta)Y - \gamma Y^2, \quad u = \gamma Y \left(1 - \frac{y}{Y}\right) \quad Y = \frac{r}{r}
\]

differential logistic equation

Phase portrait

Intermediate

\[f(x) \]

\[\begin{array}{c}
\downarrow \\
\rightarrow
\end{array} \]

\[y \]

\[\leftarrow \\
\uparrow \text{unstable} \quad \text{stable} \]

When population is small, $u \approx \gamma y$, no competition, exponential growth.
Eventually, a stable equilibrium $y = \dot{y}$ is reached.

Discrete Equations: Evolution of species may occur discretely (e.g., birth in spring, death in winter) rather than continuously. So a better model might be

\[x_{n+1} = \lambda x_n (1 - x_n) \]

Discrete logistic equation, or difference map. $x_{n+1} = f(x_n)$

Behaviour

\[\lambda < 1 \]

\[x_{n+1} = x_n \]

\[x_n = 0 \quad x_n = 1 \quad \frac{1}{\lambda} \]

From picture, $x = 0$ is a stable fixed point.
Stability: suppose \(x_n = x \) is a fixed point

Write \(x_n = x + E_n \) perturbation

\[
X + E_{n+1} = f(X + E_n)
\]

\[
X + E_{n+1} = f(x) + E_n f'(x) + O(E_n^2)
\]

\[
E_{n+1} = \frac{f'(x)}{2} E_n
\]

Fixed point is stable if \(|\frac{E_{n+1}}{E_n}| < 1 \) for all \(n \)

\[
|f'(x)| < 1
\]

For logistic equation

\[
f = \lambda x(1-x)
\]

\[
f' = \lambda - 2\lambda x
\]

\(x = 0, f' = \lambda \), so \(x = 0 \) is stable \(\Rightarrow |\lambda| < 1 \)

\(x = 1 - \frac{1}{\lambda} \) is stable if \(|\lambda - 2\lambda + 2| < 1 \) \(\Rightarrow |2 - \lambda| < 1 \)

\[
\frac{E_{n+1}}{E_n} = f'(x) = 2 - \lambda, > 0 \text{ for } \lambda < 2
\]

\(< 0 \text{ for } \lambda > 2 \)
Relationship between logistic equation and logistic map

Logistic equation:

\[\frac{dy}{dt} = ry \left(1 - \frac{y}{Y}\right). \]

Approximate the left-hand side to give

\[\frac{y_{n+1} - y_n}{\Delta t} \approx ry_n \left(1 - \frac{y_n}{Y}\right) \]

\[\Rightarrow y_{n+1} \approx y_n + r\Delta t y_n \left(1 - \frac{y_n}{Y}\right) \]

\[= (1 + r\Delta t)y_n - \frac{r\Delta t}{Y} y_n^2 \]

\[= (1 + r\Delta t)y_n \left[1 - \left(\frac{r\Delta t}{1 + r\Delta t}\right) \frac{y_n}{Y}\right] \]

Write

\[\lambda = 1 + r\Delta t, \quad x_n = \left(\frac{r\Delta t}{1 + r\Delta t}\right) \frac{y_n}{Y} \]

Then

\[x_{n+1} = \lambda x_n (1 - x_n), \]

which is the logistic map.
\[x_{n+1} = \lambda x_n(1-x_n) \]

\(\lambda < 1 \)

\(1 < \lambda < 2 \)

\(2 < \lambda < 3 \)

\[3 c \lambda < 1 + \sqrt{6} \approx 3.449 \]

Oscillatory convergence to a limit cycle

At \(\lambda = 1 + \sqrt{6} \approx 3.449 \), the limit cycle gives way to a four cycle and at a little larger value of \(\lambda \), to an 8 cycle, and so on ad infinitum.

Stability Diagram

\[ay'' + by' + cy = f(x) \quad a, b, c \text{ constant} \]

1) Find complementary functions, which satisfy the homogeneous equation

\[ay'' + by' + cy = 0 \]

2) Find a particular integral that satisfies the full equation
Complementary functions

Recall that \(e^{ax} \) is an eigenfunction of \(\frac{d}{dx} \) and hence also \(\frac{d^2}{dx^2} = \frac{d}{dx} \frac{d}{dx} \). Therefore the complementary functions have the form:

\[
y_c = e^{ax}, \quad y_c' = xe^{ax}, \quad y_c'' = x^2 e^{ax}
\]

\[
\Rightarrow a^2 + b^2 + c = 0 \quad \text{characteristic equation}
\]

There are two (possibly complex) solutions of the characteristic equation. If they are distinct, \(\lambda_1, \lambda_2 \) say, \(\lambda_1 \neq \lambda_2 \), then there are two independent complementary functions:

\[
y_1 = e^{\lambda_1 x}, \quad y_2 = e^{\lambda_2 x}
\]

If \(\lambda_1, \lambda_2 \) are distinct, \(y_1, y_2 \) are linearly independent and complete. They form a basis of the space of solutions of the homogeneous equation.

The general complementary function is:

\[
y_c = Ae^{\lambda_1 x} + Be^{\lambda_2 x}
\]

E.g.

\[
y'' - 5y + 6y = 0 \quad \Rightarrow \lambda^2 - 5\lambda + 6 = 0
\]

\[
\Rightarrow (\lambda - 2)(\lambda - 3) = 0
\]

\[
y_c = Ae^{2x} + Be^{3x}
\]

\[
y'' + 4y = 0 \quad \Rightarrow \lambda^2 + 4 = 0
\]

\[
\lambda = \pm 2i \quad \Rightarrow \lambda_1 = e^{2ix}, \quad \lambda_2 = e^{-2ix}
\]

\[
y_c = A(\cos 2x + i\sin 2x) + B(\cos 2x - i\sin 2x)
\]

\[
y_c = (A + B)\cos 2x + i(A - B)\sin 2x
\]

\[
y_c = (A + B)\cos 2x + i(A - B)\sin 2x
\]
Differential Equations

Degeneracy:
\[y'' - 4y' + 4y = 0 \]
\[\lambda^2 - 4\lambda + 4 = 0 \]
\[(\lambda - 2)^2 = 0 \]
\[\lambda = 2 \text{ or } 2 \]
But \(e^{2x} \) and \(e^{-2x} \) are clearly not independent.
So these in particular are not complete.

Determining: Consider
\[y'' - 4y' + (4 - \varepsilon^2)y = 0 \]
To find eigenfunction solution
\[y = e^{\lambda x} \]
\[\lambda^2 - 4\lambda + 4 - \varepsilon^2 = 0 \]
\[\lambda = 2 \pm \frac{\varepsilon}{2} \]
\[y_c = Ae^{(2 + \varepsilon)x} + Be^{(2 - \varepsilon)x} = e^{2x} \left(Ae^{\varepsilon x} + Be^{-\varepsilon x} \right) \]
\[= e^{2x} \left[(A + B) + \varepsilon x (A - B) + O(\varepsilon^2) \right] \]

Choose \(A + B = \alpha \), independent of \(\varepsilon \)
\[\varepsilon (A - B) = \beta, \text{ independent of } \varepsilon \]
\[A = \frac{1}{2} \left(\alpha + \frac{\beta}{\varepsilon} \right), \quad B = \frac{1}{2} \left(\alpha - \frac{\beta}{\varepsilon} \right) \]
\[= O \left(\frac{1}{\varepsilon} \right) \]
\[B = O \left(\frac{1}{\varepsilon} \right) \]
So \(\varepsilon \to 0 \)

\[y_c = e^{2x} \left[\alpha + \beta x + O(\varepsilon) \right] \]

Linear equations with constant coefficients
\[\Rightarrow e^{2x} \left[\alpha + \beta x \right], \quad \varepsilon \to 0 \]
A demonstration of a general rule that if \(y_1(x) \) is a degenerate complementary function, then \(y_2(x) = xy_1(x) \) is a complementary function.
Differential Equations

Method of finding second complementary functions (degenerate cases):

If \(y_1(x) \) is a complementary function of a homogeneous linear 2nd order ODE, look for another solution of the form \(y_2(x) = v(x) y_1(x) \).

Note that \(v'(x) \) will satisfy a first-order equation.

E.g. \(y'' - 4y' + 4y = 0 \), \(y_1 = e^{2x} \)

Try \(y_2 = v(x)e^{2x} \)

\[y_2' = (v' + 2v)e^{2x} \]
\[y_2'' = (v'' + 4v' + 4v)e^{2x} \]

\[y'' + 4y' + 4y - 4(v' + 2v) + 4v = 0 \]

\(v'' = 0 \), \(v' = A \), \(v = Ax + B \)

So \(y_2(x) = (Ax + B)e^{2x} \)

Note that \(y_2 \) may include arbitrary amount of \(y_1 \).

This method works for any linear homogeneous ODEs, constant coefficient.

Phase Space: A differential equation of \(n^{th} \) order determines the \(n^{th} \) derivative \(y^{(n)}(x) \), and hence, all other derivatives in terms of \(x, y(x), y'(x), \ldots, y^{(n-1)}(x) \).

We can think of this in terms of a solution vector:

\[Y = \begin{pmatrix} y(x) \\ y'(x) \\ \vdots \\ y^{(n-1)}(x) \end{pmatrix} \]

Defining a point (for each value of \(x \)) in an \(n \)-dimensional phase space. \(Y(x) \) traces out a trajectory in phase space.

\(y'' + 4y = 0 \)

\[y_1 = e^{2x}, \quad y_2 = \sin 2x \]

\[y_1' = 2e^{2x}, \quad y_2' = \cos 2x \]

The solution vectors are

\[Y_1 = \begin{pmatrix} e^{2x} \\ 2e^{2x} \end{pmatrix}, \quad Y_2 = \begin{pmatrix} \sin 2x \\ \cos 2x \end{pmatrix} \]
The solutions $y_1(x)$ and $y_2(x)$ are independent solutions of the differential equation because if the vectors y_1 and y_2 are linearly independent i.e. if the Wronskian determinant:

$$W(x) = \begin{vmatrix}
y_1 & y_2 & y_3 & \ldots & y_n \\
y'_1 & y'_2 & y'_3 & \ldots & y'_n \\
y''_1 & y''_2 & y''_3 & \ldots & y''_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
 y^{(n-2)}_1 & y^{(n-2)}_2 & y^{(n-2)}_3 & \ldots & y^{(n-2)}_n
\end{vmatrix} \neq 0$$

For a 2nd order equation $W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$

E.g. $W = \begin{vmatrix} \cos 2x & \sin 2x \\ -2 \sin 2x & 2 \cos 2x \end{vmatrix} = 2 \neq 0$

Or

$$W = \begin{vmatrix} e^{2x} & xe^{2x} \\ 2e^{2x} & (1+2x)e^{2x} \end{vmatrix} = e^{4x} (1+2x-2) = e^{4x} \neq 0$$

Abel's Theorem

With equation in standard form $y'' + p(x) y' + q(x) y = 0$

If p, q are continuous then either $W \equiv 0$ or $W \neq 0$ for any value of x.
Differential Equations

Suppose y_1 and y_2 are two solutions. Then $y_2(y_1'' + p y_1' + q y_1) = 0$ and $y_1(y_2'' + p y_2' + q y_2) = 0$. Subtract to get $(y_2 y_1'' - y_1 y_2'') + p(y_2 y_1' - y_1 y_2') = 0$.

\[- W' - pW = 0 \]
\[
\Rightarrow W' + pW = 0
\]
\[
\Rightarrow W = W_0 e^{-\int p \, dx}
\]

The exponential is never zero so $W_0 = 0$ or $W \neq 0$ for any x.

Note: Any linear second order differential equation can be written in the form $y'' + A(x)y = 0$.

It can be shown that $W' + T(A)W = 0$, $W = W_0 e^{-\int T(A) \, dx}$ and Abel's Theorem holds.
Differential Equations

Partial Integrals
Method 1 - Guesswork

\(f(x) \) \(\quad y_p(x) \) \(A e^{mx} \)

\(e^{mx} \)
\(\sin kx \)
\(\cos kx \)
\(x^n \)
\(q_n(x) = a_n x^n + \ldots + a_1 x + a_0 \)

Remember that equation is linear, so we can superpose solutions corresponding to different forcings.

E.g., \(y'' - 5y' + 6y = 2x + e^{4x} \)
\(y_p = \alpha x + \beta + ce^{4x} \)
\(y_p' = \alpha + 4ce^{4x} \)
\(y_p'' = 16ce^{4x} \)
\(16ce^{4x} - 5(\alpha + 4ce^{4x}) + 6(\alpha x + \beta + ce^{4x}) = 2x + e^{4x} \)
\(16c - 20\alpha + 6\beta = 1 \Rightarrow c = \frac{1}{10} \)
\(-5\alpha + 6\beta = 0 \Rightarrow \beta = \frac{6}{10} = \frac{3}{5} \)
\(6\alpha = 2 \Rightarrow \alpha = \frac{1}{3} \)

General solution: \(y = Ae^{2x} + \frac{3}{2}e^{4x} + \frac{3x}{10} + \frac{3}{5} \)

Note!

Can apply boundary conditions with only the complete solution \(y = y_c + y_p \)

Resonance Consider \(y + \omega_0^2 y = 0 \) \(\sin \omega t \) \(y_c = A \sin \omega t + B \cos \omega t \)

Here the forcing is linearly dependent on the eigenfunctions of the homogeneous ODE (i.e., on the complementary functions).

\(y_p = C \sin \omega t + D \cos \omega t \) will give \(y_p' + \omega_0^2 y_p = 0 \) so we cannot force.

This example is a simple harmonic oscillator forced at its natural (resonant) frequency.
Consider \(y + \omega_0^2 y = \sin \omega t \) \(\omega \neq \omega_0 \)

\[
\begin{align*}
\dot{y}_p &= c(\sin \omega t - \sin \omega_0 t) \\
\ddot{y}_p &= c(-\omega^2 \sin \omega t + \omega_0^2 \sin \omega_0 t)
\end{align*}
\]

no cosine needed, no need to take account of first derivative

Substitute

\[
\Rightarrow c(\omega_0^2 - \omega^2) = 1
\]

\[
\Rightarrow y_p = \frac{\sin \omega t - \sin \omega_0 t}{\omega_0^2 - \omega^2}
\]

\[
\omega_0 - \omega = \Delta \omega
\]

\[
y_p = -\frac{2}{(\omega + \omega_0) \Delta \omega} \sin \left(\frac{\omega_0 - \omega}{2} t \right) \sin \left(\frac{\omega_0 + \omega}{2} t \right)
\]

If the forcing is at a frequency close to the natural frequency we get beating, and as \(\Delta \omega \to 0 \), the envelope tends to \(\infty \) and we see initial linear growth.

Mathematically:

\[
\Delta \omega \to 0 \\
y_p = -\frac{2}{\omega + \omega_0} \cos(\omega_0 t) \times \left(\frac{t}{2} \right)
\]

General rule: If forcing is a linear combination of complementary functions, the particular integral has an amplitude proportional to \(t \) times the non-resonant guess (relates to ODEs with constant coefficients).
Method 2
Let $y_1(x)$, $y_2(x)$ be linearly independent functions of the ODE.

\[y'' + p(x) y' + q(x) y = f(x) \]

The solution vector $X_1 = (y_1)$, and $X_2 = (y_2)$ form a basis of the phase space (solution space).

We can write

\[Y_p(x) = u(x) X_1(x) + v(x) X_2(x) \]

Then

\[y_p'' = u y_1'' + u' y_1' + v y_2'' + v' y_2' \]

Apply product rule

\[y_p' = u y_1' + u' y_1 + v y_2' + v' y_2 \]

Compare with \(\#2 \Rightarrow y_1 u' + y_2 v'' = 0 \)
\[y'' + py' + qy = f \]

\[y_p = uy_1 + vy_2 \]

\[y_p' = uy_1' + vy_2' \]

\[\Rightarrow y_1u + y_2v' = 0 \]

\[y_p'' = uy_1'' + u'y_1 + vy_2'' + v'y_2 \]
Differential Equations

\[Y_1(x) = \begin{pmatrix} y_1' \\ y_1 \\ \end{pmatrix} \quad Y_2(x) = \begin{pmatrix} y_2' \\ y_2 \\ \end{pmatrix} \]

\[Y_p = u(x)Y_1(x) + v(x)Y_2(x) \]

\[y_p = u y_1' + v y_2' \]

\[y_p' = u y_1'' + v y_2'' \]

\[y_1 u'' + y_2 v' = 0 \]

Differential Equation

\[y'' + p(x) y' + q(x)y = f(x) \]

\[y_p'' = u y_1'' + u y_1' + v y_2'' + v y_2' \]

Substitute differential equation

\[\Rightarrow y_1 u' + y_2 v' = f(x) \]

(1) and (2) give

\[\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} = \begin{pmatrix} 0 \\ f \end{pmatrix} \]

\[\begin{pmatrix} u' \\ v' \end{pmatrix} = \frac{1}{w} \begin{pmatrix} y_2' \\ -y_2 \end{pmatrix} \begin{pmatrix} 0 \\ f \end{pmatrix} \]

So solution exists providing \(W \neq 0 \)

\[\Rightarrow u' = -\frac{y_2}{w} f \quad v' = \frac{y_1}{w} f \]
Eqn. \(y'' + 4y = \sin 2x \)

\[y_1 = \sin 2x \quad \text{and} \quad W = -2 \]
\[y_2 = \cos 2x \]

\[y_p = u \sin 2x + v \cos 2x \]
\[y_p' = u \cos 2x + v (-2 \sin 2x) \]
\[y_p'' = -2u \sin 2x + 2v \cos 2x \]

Sub and solve to find \(u' = \frac{\cos 2x \sin 2x}{2} \), \(v' = -\frac{\sin 2x}{2} \)

\[u = -\frac{1}{16} \cos 4x, \quad v = \frac{1}{16} \sin 4x - \frac{x}{4} \]

\[y_p = \frac{1}{16} \left(- \cos 4x \sin 2x + \sin 4x \cos 2x \right) - \frac{x}{4} \cos 2x \]

\[\frac{1}{16} \sin 2x - \frac{1}{4} x \cos 2x \rightarrow \text{found earlier by 'detuning'} \]

Piece of complimentary function

Homogeneous Equations (linear equidimensional equation)

\[ax^2 y'' + bxy' + cy = f(x) \]

with \(a, b, c \) constants.

Complementary functions.

Note \(y = x^n \) is an eigenvector of the operator \(x \frac{d}{dx} \)

1. **To solve** \(ax^2 y'' + bxy' + cy = 0 \)

 - \(y = x^k \), \(y' = kx^{k-1} \), \(y'' = k(k-1)x^{k-2} \)
 - \(ak(k-1) + bk + c = 0 \) \(\Rightarrow k = k_1, k_2 \)
 - \(y_c = Ax^{k_1} + Bx^{k_2} \)

2. **Write** \(z = \ln x \), show \(a \frac{d^2 y}{dz^2} + (b-a) \frac{dy}{dz} + cy = f(e^z) \)

So this transformation converts an equidimensional equation into one with constant coefficients.
Characteristic equation \(a \lambda^2 + (b-a) \lambda + c = 0 \)
\[y_c = A e^{k_1 x} + B e^{k_2 x} \Rightarrow \text{same solution} \]

If roots of the characteristic equation are equal then \(y_c = e^{kx} \)
\[y_c = x^k, \quad x^k \log x \]
And if there is a resonant forcing proportional to \(x^k \) or \(x^k \log x \) then there is a particular again with logarithmic growth; form \(x^k \log x \) or \(x^k \log x \)

Difference Equations for discrete variables

\[a y_{n+2} + b y_{n+1} + c y_n = f_n \]
Solve in a similar way to differential equations by exploiting linearity and eigen functions.

Difference operator
\[\Delta[y_n] = y_{n+1} - y_n \]
has eigenfunction \(y_n = k^n \)
because \(\Delta[k^n] = k^{n+1} - k^n = k^n (k-1) = k y_n \)

To solve the difference equation, first look for complimentary functions satisfying \(a y_{n+2} + b y_{n+1} + c y_n = 0 \)

Try \(y_n = k^n \)
\[a k^{n+2} + b k^{n+1} + c k^n = 0 \]
\[a k^2 + b k + c = 0 \]
\[\Rightarrow k = k_1, k_2 \]

General complimentary function \(y_n^{(c)} = A k_1^n + B k_2^n \) \(\neq k_1 = k_2 \)

Particular integrals

\[\begin{align*}
 y_n^{(p)} &= (A+Bn)k_1^n, & \text{if} \quad k_1 = k_2 \\
\end{align*} \]
Particular Integrals (difference equations)

\[y^{(n)} + A_2^k \lambda^n + A_1^k + A_1^k + \ldots + C_n + D \]

\[k_1, k_2, \ldots, k_n \]
Differential Equations

Difference operator $D[y_n] = y_{n+1}$ has an eigenfunction $y_n = k^n$

E.g. Fibonacci Sequence $y_n = y_{n-1} + y_{n-2}$, $y_0 = y_1 = 1$

$y_{n+2} - y_{n+1} - y_n = 0$

$D^2[y_n] - D[y_n] - y_n = 0$

$\Rightarrow k^2 - k - 1 = 0$

$k = \frac{1 \pm \sqrt{5}}{2}$, φ_1, φ_2

General solution $y_n = A\varphi_1^n + B\varphi_2^n$

Initial conditions $y_0 = 1 = A + B$

$y_1 = 1 = A\varphi_1 + B\varphi_2$

$\Rightarrow A = \frac{\varphi_1}{\sqrt{5}}$, $B = -\frac{\varphi_2}{\sqrt{5}}$

$\Rightarrow y_n = \frac{\varphi_1^{n+1} - \varphi_2^{n+1}}{\sqrt{5}}$

Transient and damping

In many physical systems there is some sort of restoring force and some damping. E.g. car suspension

Newton's second law

$M\ddot{x} = F - kx = \frac{dL}{dt}$

$\ddot{x} + \frac{k}{M}\dot{x} + \frac{k}{M}x = \frac{F(t)}{M}$

Write $t = \sqrt{\frac{M}{k}}T$

$\ddot{x} + 2\frac{k}{M}\dot{x} + \frac{k}{M}x = f(T)$

where (\cdot) means $\frac{\Delta}{\Delta t}$, $K = \frac{L}{2J_k m}$

There is a single parameter K determining the behaviour of the system.

Free (natural response) $f = 0$, $\ddot{x} + 2\frac{k}{M}\dot{x} + \frac{k}{M}x = 0$

$\Rightarrow x = e^{\lambda t} \Rightarrow \lambda^2 + 2\frac{k}{M}\lambda + 1 \Rightarrow \lambda = -\frac{k}{M} \pm \sqrt{\frac{k^2}{M^2} - 1} = \lambda_1, \lambda_2$
If we increase the damping (or decrease the mass or spring constant) the period increases and the decay decreases.

As $K > 1$, period $> \frac{\pi}{K}$

$K = 1$ (critically damped) $x = (A + B\gamma) e^{-K \gamma}$

Possible to get a large initial increase in amplitude before the eventual slow decay

In a forced system, the complementary function determines the early time transient response while the particular integral determines the long-term "asymptotic" response.
Differential Equations

Given:
\[\ddot{x} + 2k \dot{x} + x = \sin \omega t \quad k \neq 0 \]

By
\[x = C \sin \omega t + D \cos \omega t \]

for particular integral
\[C = 0, \quad D = \frac{1}{2k} \]

\[x = A e^{i \omega t} + B e^{-i \omega t} - \frac{1}{2k} \cos \omega t \sim -\frac{1}{2k} \cos \omega t \]

because
\[\text{Re}(A e^{i \omega t}) = 0 \]

Note the forced response is out of phase with the forcing.
Differential equations

Impulses and point forces
Consider a ball bouncing on the ground
\[\text{Force exerted on the ball is } F(t) \]

\[T \]
\[t_1 \]
\[t_2 \]

Often don't know or wish to know details of \(F(t) \) but note that it only acts for a time of \(O(\varepsilon) \) much less than the total time scale of the system

It is mathematically to imagine the force acting instantaneously at \(t = T \), i.e. \(\varepsilon \to 0 \). Using Newton's 2nd Law:
\[\begin{align*}
\frac{d^2 x}{d t^2} &= F(t) - mg \\
\int_{T-E}^{T+E} m \frac{d^2 x}{d t^2} dt &= \int_{T-E}^{T+E} F(t) dt - mg \int_{T-E}^{T+E} dt
\end{align*} \]

\[\left[m \frac{d x}{d t} \right]_{T-E}^{T+E} = I - 2mg \varepsilon \quad \text{where } I = \int_{T-E}^{T+E} F(t) dt \]

are under the curve

If contact time \(2\varepsilon \) is very small then mathematically we neglect it and write

\[\left[m \frac{d x}{d t} \right]_{T} = I \]

Important: The only feature of \(F(t, \varepsilon) \) we are interested in is its integral.
Mathematically, we consider a family of functions \(D(t; \varepsilon) \) such that

\[\lim_{\varepsilon \to 0} D(t; \varepsilon) = 0 \quad \text{for all } t = 0. \]
\[\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} D(t; \varepsilon) dt = 1 \]

E.g. \(D(t; \varepsilon) = \frac{1}{\sqrt{4\pi \varepsilon}} e^{-\frac{t^2}{4\varepsilon}} \)

as \(\varepsilon \to 0^+ \), \(D(0; \varepsilon) \to 0 \) so \(\lim_{\varepsilon \to 0} D(t; \varepsilon) \) is not a function, it is undefined.
Nonetheless we define the Dirac Delta Function by
\[\delta(x) = \lim_{\varepsilon \to 0} g(x; \varepsilon) \]
on the understanding that we can only use its integral properties:

\[\int_{-\infty}^{\infty} g(x) \delta(x) \, dx = g(0) \]

\[\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} g(x) \Delta(x; \varepsilon) \, dx \]

Note, no formal proof here.

Provided \(g \) is continuous.

This gives us a convenient way of representing and making calculations involving impulses or point forces.

\[\ddot{x} = -mg + \int \delta(t-x) \, dt \]

\[x = x_0, \quad x = 0, \quad t = 0. \]

\[\ast \]

In general
\[\int_{a}^{b} g(x) \delta(x-c) \, dx = g(c) \]

\[= 0 \]

if \(c < a, \ c > b \)

Example: Point Force

Solve \(y'' - y = 3 \delta(x - \frac{\pi}{2}); \quad y = 0 \) at \(x = 0, \pi \)

for \(0 \leq x \leq \pi \)

1. \(0 \leq x < \frac{\pi}{2} \)
 \[y'' - y = 0 \]
 \(y = 0 \) at \(x = 0 \) \(\Rightarrow B = 0 \)

2. \(\frac{\pi}{2} < x \leq \pi \)
 \[y'' - y = 0 \]
 \(y = 0 \) at \(x = \pi \) \(\Rightarrow D = 0 \)

3. \(x = \frac{\pi}{2} \)
 \(y \) is continuous \(\Rightarrow A = C \)

Integrate from \(\frac{\pi}{2} - \epsilon \) to \(\frac{\pi}{2} + \epsilon \).

\[y \left[\frac{\pi}{2} + \epsilon \right] = 3 \]

\[y = -\frac{3 \sinh x}{2 \cosh \frac{\pi}{2}} \]

\[0 \leq x < \frac{\pi}{2} \]

\[-\frac{3 \sinh (\pi - x)}{2 \cosh \frac{\pi}{2}} \]

\[\frac{\pi}{2} < x \leq \pi \]
Differential Equations

\[\delta(x) = 0, \ x \neq 0 \]
\[\int_{-\infty}^{\infty} \delta(x) \, dx = 1 \]
\[\int_{a}^{b} g(x) \delta(x-c) \, dx = \begin{cases} g(c) \text{ if } a < c < b \\ 0 \text{ if } c \leq a \text{ or } c \geq b \end{cases} \]
\[ay'' + by' + cy = \delta(x-d) \]
Then \[ay'' + by' + cy = 0 \text{ if } x > d, \ x < d \]
\[\frac{d^2 y}{dx^2} + a \frac{dy}{dx} = 0 \]

Heaviside Step Function \(H(x) \)
\[H(x) = \int_{-\infty}^{x} \delta(t) \, dt \]
\[H(x) = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases} \]
\[H(0) \text{ is undefined.} \]

Can apply the Fundamental Theorem of Calculus gives
\[\frac{dH}{dx} = \delta(x) \]
useful for matching problems
\[V(H(t)) = 1R + \frac{Q}{C} = R \frac{dq}{dt} + \frac{Q}{C} \]
\[\Rightarrow \frac{Q}{C} + R \frac{dQ}{dt} = \frac{V}{R} H(t) \]
Note, \(Q \) is continuous at \(t=0 \) but \(Q \) jumps by \(\frac{V}{R} \)

Series Solutions
Consider equations of the form \(p(x) y'' + q(x) y' + r(x) y = 0 \)
\(x = x_0 \) is an ordinary point of the DE if \(\frac{q}{p} \) and \(\frac{r}{p} \) have Taylor series at \(x_0 \) (i.e. infinitely differentiable at \(x_0 \)). Otherwise it is a singular point. If \(x_0 \) is a singular point, but the equation can be written in the form
\[p(x) \left(x - x_0 \right)^n y'' + q(x) \left(x - x_0 \right)^{n-1} y' + r(x) y = 0 \]
where \(\frac{q}{p} \) and \(\frac{r}{p} \) have Taylor series about \(x_0 \), then \(x_0 \) is a regular singular point.

Examples
i) \((x^2 - 2x) y'' - 2xy' + 2y = 0 \). \(x = 0 \) is an ordinary point,
\(x = \pm 1 \) are regular points

ii) \(\sin x y'' + \cos x y' + 2y = 0 \)
\(x = \pi \) is a regular point, all regular. All others points are ordinary.
iii) $(1+5x)y'' - 2xy' + 2y = 0$
$x = 0$ is an irregular singularity.

Theorem
If x_0 is an ordinary point then the equation has 2 linearly independent solutions of the form
$$y = \sum_{n=0}^{\infty} a_n (x-x_0)^n$$
convergent in some neighborhood of x_0.

If x_0 is a regular singular point then the equation has at least 1 solution of the form
$$y = \sum_{n=0}^{\infty} a_n (x-x_0)^{n+\alpha}$$
Frobenius Series, $a_0 \neq 0$

Eqn: $(1-x^2)y'' - 2xy' + 2y = 0$, $x = 0$, ordinary point.
We will find a series solution about $x = 0$,
Write
$$(1-x^2)x^2 y'' - 2x^2 xy' + 2x^2 y = 0$$

Try:
$$y = \sum_{n=0}^{\infty} a_n x^n$$

$$\sum_{n=0}^{\infty} a_n \left[(1-x^2)(n(n-1)-2x^2 n + 2x^2) \right] x^n = 0$$

Coefficient of x^n gives a general recurrence relation.
$$n(n-1)a_n - [(n-2)(n-2-1) + 2(n-2) + 2]a_{n-2} = 0$$
$$n(n-1)a_n = n(n-3)a_{n-2}$$

If $n \geq 2$:
$$a_n = \frac{n-3}{n-1} a_{n-2}$$

After this is the end of the story,
$$a_n = \frac{n-3}{n-1} a_{n-2} = \frac{n-3}{n-1} \cdot \frac{n-5}{n-3} a_{n-4}$$

$$\Rightarrow a_{2k+1} = -\frac{1}{2k+1} a_0, \quad k \geq 1$$

$$y = a_0 \left[1 - \frac{x^2}{1} - \frac{x^4}{3} - \frac{x^6}{5} \cdots \right] + q, x$$
$$= a_0 \left[1 - \frac{x}{1} \ln \frac{1}{1-x} \right] + q, x$$
\[
(1-x^2) y'' - 2xy' + 2y = 0
\]
\[
p y'' - q y' + ry = 0
\]
If \(\frac{q}{p} \) have Taylor series at \(x = x_0 \), then \(x_0 \) is a regular point.

1. \(x = 1 \) is a regular singular point.

\[
(1-x^2) y'' - xy = 0
\]

Example:
\[
x = 0 \text{ is a regular singular point.}
\]

First write
\[
4x^2 y'' + 2(1-x^2)(xy') - x^2(y) = 0
\]

Try
\[
y = \sum_{n=0}^{\infty} a_n x^{n+\sigma}, \quad a_0 \neq 0
\]

\[
\sum_{n=0}^{\infty} a_n \left[4(n+2)(n+2-1) + 2(1-x^2)(n+2) - x^2 \right] x^{n+\sigma} = 0
\]

Coefficient of \(x^{n+\sigma} \) gives
\[
\left[4(n+2)(n+2-1) + 2(n+2) \right] a_n + a_{n-2} \left[-2(n+2) - 1 \right] = 0
\]

\[
2(n+2)(2n+2-1) a_n = (2n+2-3) a_{n-2}
\]

The case \(n = 0 \) gives the indicial equation, which determines the index \(\sigma \)
\[
25(2n+1) a_0 = 0 \quad \text{but we decided } a_0 \neq 0 \quad \Rightarrow \quad \sigma = 0, \quad \sigma = \frac{1}{2}
\]

Try \(\sigma = 0 \)

\[
2n(2n-1) = (2n-3) a_{n-2}
\]

\(n = 0 \) \(\Rightarrow \) \(a_0 = 0 \) \(\Rightarrow \) \(a_0 \) is arbitrary

\(n > 0 \) \(\Rightarrow \) \(a_n = \frac{2n-3}{4n(n-1)} a_{n-2} \), note \(a_1 = 0 \) \(\Rightarrow a_0 = 0 \) if \(n \) odd,
\[
a_{2k} = \frac{4k^2 - 3}{4k^2 - 1} a_{2k-2}
\]

\[y = a_0 \left[1 + \frac{x^2}{4} + \frac{3}{8\times 4\times 6} x^4 + \ldots \right]
\]

\(\sigma = 1 \)
\[
\frac{(2n+1)(2n)}{2} a_n = (2n-2) a_{n-2}
\]

\(n = 0 \) \(\Rightarrow \) \(a_0 = 0 \) \(\Rightarrow \) \(a_0 \) is arbitrary (call it \(b_0 \))

\(n = 1 \)
\[
6a_1 = 0 \quad \Rightarrow \quad a_1 = 0
\]

\(n > 1 \)
\[
a_n = \frac{n-1}{n(n+1)} a_{n-2} \quad \Rightarrow \quad y = b_0 \left[1 + \frac{x^2}{8} + \frac{3}{256} x^4 + \ldots \right]
\]
Behaviour near x_0:

Indicial equation has two roots (for the 2nd order equation) say α_1, α_2

i) $\alpha_2 - \alpha_1$ is not an integer then there are two linearly independent Frobenius series solutions

\[y_1 = (x - x_0)^{\alpha_1} \sum_{n=0}^{\infty} a_n (x - x_0)^n \]

The other solution is of the form $y_2 = \sum_{n=0}^{\infty} b_n (x - x_0)^{\alpha_2 - \alpha_1} \ln (x - x_0) y_1$

Example: $x^2 y'' - y = 0 \quad \beta = 1, \quad \lambda = -x \quad \rho = -x$

So $x = 0$ is a regular singular point

\[\sum a_n x^{n+\sigma} \left[(n+\sigma)(n+\sigma-1) - \alpha \right] = 0 \]

Coefficient of $x^{n+\sigma} \quad (n+\sigma)(n+\sigma-1) a_n = a_{n-1}$

$n = 0$ gives indicial equation $\Rightarrow \sigma (\sigma - 1) a_0 = 0$

$a_0 \neq 0 \Rightarrow \sigma = 0, 1$

$\sigma = 1 : \quad (n+1) a_n = a_{n-1}$

$n = 0 : \quad 0 = a_0 \Rightarrow a_0$ is arbitrary

$n > 0 : \quad a_n = \frac{a_{n-1}}{(n+1)(n+2)} a_0$

\[y_1 = a_0 x \left[1 + \frac{x}{2} + \frac{x^2}{12} + \frac{x^3}{144} + \cdots \right] \]

$\sigma = 0 : \quad n(n-1) a_n = a_{n-1}$

$n = 0 : \quad 0 = a_0 \Rightarrow a_0$ is arbitrary

$n = 1 : \quad 0 = a_1 \Rightarrow a_0 = 0 \Rightarrow a_0$ is arbitrary

But we chose $a_0 \neq 0$.

Suppose we allow $a_0 = 0$. Then $0 = a_1 \Rightarrow a_1$ is arbitrary.

$n > 1, \quad a_n = \frac{1}{n(n-1)} a_{n-1} = \frac{1}{n(n-1)(n-2)} a_1$

\[y_2 = a_1 \left[1 + \frac{x}{2} + \frac{x^2}{12} + \frac{x^3}{144} + \cdots \right] = y_1, \text{which is the solution we found already.} \]

The other independent solution is actually

\[y_2 = y_1 \ln x + \sum_{n=0}^{\infty} b_n x^n \]
Consider an infinitesimal displacement $\Delta s = (\Delta x, \Delta y)$. The change in $f(x, y)$ during this displacement is
$$df = \Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y.$$

The gradient vector ∇f is defined by $\Delta f = \nabla f \cdot \Delta s$, where ∇f has Cartesian components $(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$. ∇f is the gradient of f.

Write $ds = ds \hat{z}$, where $\hat{z} = 1$. Then
$$df = ds \nabla f \cdot \hat{z}.$$

$\frac{df}{ds}$ is the directional derivative of f in the direction of \hat{z}.

The gradient vector ∇f has the following properties:

1. ∇f has magnitude equal to the maximum rate of change of $f(x, y)$ with distance in the x-y plane.
2. ∇f has direction in which f increases most rapidly.
3. If Δs is a displacement along a contour of f, then $\frac{df}{ds} = 0$.
4. ∇f is orthogonal to the contour.

Examples of gradient vectors:

- If Φ is the gravitational potential, $E = -\nabla \Phi$ is the gravitational force.
- $T(x, y, z)$ is temperature, then heat flows by conduction in the direction of $-\nabla T$, so heat flow $q = -k \nabla T$ (thermal conductivity).

Stationary Points:

There is always one direction in which $\frac{df}{ds} = 0$ namely parallel to a contour of f. Local maxima and minima have $\frac{df}{ds} = 0$ for all directions.

In Cartesian this translates to $\frac{df}{dx} = 0$, $\frac{df}{dy} = 0$.

K/11/10
but \(\nabla f = 0 \) also at middle points (pinnacle points)

Note: contours are locally elliptical at maxima and minima, whereas they are locally hyperbolic at saddle points.

Note: contours cross only at middle points.

Taylor Series for multi-variable functions

Consider a finite displacement \(SS \) along a straight line in the \(x-y \) plane. Then \(SS \Delta \vec{a} \)

\[
\text{The Taylor series along the line is}
\]

\[
f(S) = f(S_0 + SS) = f(S_0) + SS \frac{df}{ds} + \frac{1}{2} SS^2 \frac{d^2f}{ds^2} + \ldots
\]

\[
= f(S_0) + SS \cdot \nabla f + \frac{1}{2} \left(\left(\frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \right) \right) f + \ldots
\]

where \(SS \cdot \nabla f = SS \left(\frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \right) \)

\[
SS^2 \left(\frac{\partial^2 f}{\partial x^2} \Delta x^2 + \frac{\partial^2 f}{\partial y^2} \Delta y^2 \right) f
\]

\[
= SS^2 \left(\frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \right) \left(\frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \right)
\]

\[
= SS^2 f_{xx} + SS^2 f_{xy} + SSf_{yx} + SS^2 f_{yy}
\]

\[
(\nabla \Delta f) = \left(\frac{\partial^2 f}{\partial x^2} \Delta x^2 + \frac{\partial^2 f}{\partial y^2} \Delta y^2 \right)
\]

where \(\nabla \Delta f = \left(\begin{array}{c} f_{xx} \\ f_{xy} \\ f_{yx} \\ f_{yy} \end{array} \right) \) is called the **Hessian Matrix**.
Differential Equations

System of Linear Equations
Consider two dependent variables, \(y_1(t) \) and \(y_2(t) \)

\[
\begin{align*}
y_1' &= ay_1 + by_2 + f_1(t) \\
y_2' &= cy_1 + dy_2 + f_2(t)
\end{align*}
\]

Equivalence to higher order equations

\[
\begin{align*}
y_1'' &= ay_1 + by_2 + f_1(t) \\
y_2'' &= cy_1 + dy_2 + f_2(t)
\end{align*}
\]

\[
\begin{align*}
y_1' &= ay_1 + by_2 + f_1(t) \\
y_2' &= cy_1 + dy_2 + f_2(t)
\end{align*}
\]

Conversely

\[
\begin{align*}
y' &= Ay + By \\
y_1 &= y_1 \\
y_2 &= y_2
\end{align*}
\]

Any \(n \)th order ODE is equivalent to a system of \(n \) first order ODEs

Consider \(\ddot{y} - M \dot{y} + E = 0 \), try complimentary function \(y_c = e^{\lambda t} \)

\[
E.g.
\begin{align*}
\begin{vmatrix}
-1 & 2 & 1 \\
4 & -2 & 1 \\
2 & 1 & 0
\end{vmatrix} &= 0 \\
\lambda^3 + 6\lambda^2 + 1\lambda - 2 &= 0, \\
\lambda &= 1, -2, 1
\end{align*}
\]

\[
\begin{align*}
\begin{vmatrix}
1 & 2 & 1 \\
-4 & 2 & 4 \\
0 & 1 & 2
\end{vmatrix} &= 0 \\
\begin{vmatrix}
1 & 2 \\
4 & 2 \\
1 & 0
\end{vmatrix} &= 0 \\
\begin{vmatrix}
1 & 2 \\
4 & 2 \\
0 & 1
\end{vmatrix} &= 0
\end{align*}
\]

Particular Integral

\[
\begin{align*}
\begin{vmatrix}
u_1 & e^t \\
u_2 & e^t
\end{vmatrix} &= \begin{vmatrix}
1 & e^t \\
-2 & e^t
\end{vmatrix} = (4)e^t \\
\Rightarrow \begin{vmatrix}
3 & 2 \\
-1 & 1
\end{vmatrix} &= (4) \\
\begin{vmatrix}
u_1 \\
u_2
\end{vmatrix} &= (4) \\
\begin{align*}
u_1 &= -\frac{1}{2} \\
u_2 &= \frac{3}{2}
\end{align*}
\end{align*}
\]

General solution: \(y = A(1)e^t + B(-1)e^{-t} \)
Other linear phase-plane portraits:

- General solution to $\dot{y} = M \dot{x}$ is $y = Ax \cdot e^{\lambda t} + Bx \cdot e^{\lambda t}$
- $\lambda_1, \lambda_2 \text{ real, } \lambda_1, \lambda_2 < 0$ gives a saddle, e.g., $1x, 1 \lambda_2$
- $\lambda_1, \lambda_2 \text{ real, } \lambda_1 \lambda_2 > 0$ are nodes
- $\lambda_1, \lambda_2 \text{ complex conjugates}$

$\Re(\lambda_1) < 0$ \bullet stable spiral
$\Re(\lambda_1) > 0$ \circ unstable spiral
$\Re(\lambda_1) = 0$ \bigcirc center
Differential Equations

General Non-Linear ODEs

In general, a 2nd order ODE can be written
\[x' = f(x, y, t) \]
\[y' = g(x, y, t) \]

An autonomous system of equations can be written
\[x' = f(x, y) \]
\[y' = g(x, y) \]

If the independent variable does not appear explicitly.

An n-th order, non-autonomous system can be converted into an (n+1)th order autonomous system by treating the former independent variable as a dependent variable. E.g. write \(z = t \)
\[x' = f(x, y, z) \]
\[y' = g(x, y, z) \]
\[z' = 1 = h(x, y, z) \]

Equilibrium (fixed points) for 2nd order autonomous systems

\[\begin{align*}
 x' &= 0 \\
 y' &= 0
 \end{align*} \]
\[\begin{align*}
 f(x_0, y_0) &= 0 \\
 g(x_0, y_0) &= 0
 \end{align*} \]

Solve simultaneously

Stability: Write \(x = x_0 + \alpha \)
\[y = y_0 + \beta \]
Substitute to find
\[\begin{align*}
 \alpha' &= f(x_0 + \alpha, y_0 + \beta) \\
 \beta' &= g(x_0 + \alpha, y_0 + \beta)
 \end{align*} \]

If \(\alpha' = 0 \) and \(\beta' = 0 \), \((\alpha, \beta) = 0 \)

Example: Population dynamics: Predator-Prey

Prey: \(\begin{align*}
 \frac{dx}{dt} &= Ax - Bx^2 - Cxy \\
 \frac{dy}{dt} &= -By + Cxy
 \end{align*} \)

Predators: \(\begin{align*}
 \frac{dx}{dt} &= dx - 2xy - Cxy \\
 \frac{dy}{dt} &= -y + xy
 \end{align*} \)

Fixed point:
\[x = 0 \Rightarrow x(1 - 2x - zy) = 0 \]
\[\Rightarrow x = 0, \ y = \frac{1}{2} - x \]
\[y = 0 \Rightarrow y(x - 1) = 0 \Rightarrow y = 0, \ x = 1 \]

Fixed points at \((0, 0), \ (1, 0), \ (1, 3) \)
\[\begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]
Near (4,0) \(x = 4 + \alpha, \ y = \beta \)

\[
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
= \begin{pmatrix}
-8 & -3 \\
0 & 3
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
\]

\(\hat{A} = (4+\alpha)(8 - 8 - 2\alpha - 2\beta) = -8\alpha - 8\beta \)
\(\hat{B} = \beta(3 + \alpha) = 3\beta \)

Eigenvectors \([\alpha, \beta] \)

Near (1,3) write \(x = 1 + \alpha, \ y = 3 + \beta \)

\[
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
= \begin{pmatrix}
-2 & -2 \\
3 & 0
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
\]

Characteristic polynomial \(\lambda^2 + 2\lambda + 6 = 0 \)
Partial Differential Equations - Hyperbolic (wave) equations

Order for \(y(x, t) \) \(\frac{\partial y}{\partial x} = c \frac{\partial y}{\partial t} \), \(\frac{\partial y}{\partial t} - c \frac{\partial y}{\partial x} = 0 \) inforced.

Recall that along a path \(x = x(t) \), \(\frac{dy}{dt} = \frac{\partial y}{\partial x} \frac{dx}{dt} + \frac{\partial y}{\partial t} \frac{dt}{dt} = \frac{\partial y}{\partial x} \frac{dx}{dt} + \frac{\partial y}{\partial t} = \frac{dx}{dt} + \frac{dy}{dx} \frac{dx}{dt} \).

Choose to travel along a particular path defined by \(\frac{dx}{dt} = -c \). Then along that path \(\frac{dy}{dt} = 0 \). This method converts the PDE into several ODEs. The path is defined by \(x = -ct + x_0 \), \(x + ct = x_0 \) (constant).

Along the path \(y = A \) (constant).

There is a function \(f(x_0) \) that determines the value of \(y \) on each path \(\Rightarrow y = f(x_0) = f(x + ct) \). This is the general solution of the partial differential equation.

Usually, initial conditions are given; e.g., \(\frac{\partial y}{\partial x} = c \frac{\partial y}{\partial x} \) with \(y(x, 0) = x^2 - 3 \)

\[x^2 - 3 = f(x) \Rightarrow f(x + ct) = (x + ct)^2 - 3 \]

\[t=0 \quad y = A \]

wave velocity = \(-c\)

Example: \(\frac{\partial^2 y}{\partial x^2} + 5 \frac{\partial^2 y}{\partial x \partial t} = e^{-t} \)

\(y(x, 0) = e^{-x^2} \)

The "characteristic equation" defining the paths or "characteristics" of the PDE is \(\frac{dx}{dt} = 5 \Rightarrow x = 5t + x_0 \莱 \Rightarrow x_0 = x_0 - 5t \)

Along these paths, \(\frac{dx}{dt} = e^{-t} \), \(y = A - e^{-x_0^2} \)

At \(t=0 \), \(y = A - 1 \), \(x_0 = x \), \(A - 1 = e^{-x_0^2} \), \(A = 1 + e^{-x_0^2} \)

\(\Rightarrow y = (1 + e^{-x_0^2}) - e^{-t} \)

\(\Rightarrow y = 1 + e^{-x_0^2 - t} \)

Second Order Wave equations \(\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} \) (mass x acceleration = curvature)

\(\frac{\partial^2 y}{\partial t^2} - c^2 \frac{\partial^2 y}{\partial x^2} = 0 \)

the coefficients are constant, \(c \), \(y = f(x + ct) \) and \(y = g(x - ct) \) is also a solution. The equation is linear so solutions can be superposed.

\(y = f(x + ct) + g(x - ct) \)
Exercise: Show that \(\frac{\partial^2 y}{\partial t^2} - c^2 \frac{\partial^2 y}{\partial x^2} = -4c^2 \frac{\partial^2 y}{\partial x \partial \beta} \quad \beta = x - ct \)

Hence \(\frac{\partial \beta}{\partial x} = 0 \), \(\frac{\partial y}{\partial \beta} = h(t) \)

\(\Rightarrow y = f(x) + g(\beta) = f(x + ct) + g(x - ct) \) \((f' = h) \)

Example: \(y = \frac{1}{1 + x^2} \), \(\frac{\partial y}{\partial t} = 0 \) at \(t = 0 \)

\(y \to 0 \quad \Rightarrow \quad x \to \pm \infty \)

Therefore, at time \(t = 0 \) we have \(f(x) + g(x) = \frac{1}{1 + x^2} \)

\(cf'(x) - cg'(x) = 0 \Rightarrow f' = g' \)

\(\Rightarrow f = g + \text{constant} \)

\(\beta \neq 0 \) by applying \(y \to 0 \quad \Rightarrow \quad x \to \pm \infty \)

\(f = g = \frac{1}{1 + (x - ct)^2} \quad \Rightarrow \quad y = f(x + ct) + g(x - ct) \)

\(y = \frac{1}{1 + (x + ct)^2} + \frac{1}{1 + (x - ct)^2} \)

\(t = 0 \)
Differential Equations

Hyperbolic Equations
\[\frac{\partial^2 y}{\partial t^2} - c^2 \frac{\partial^2 y}{\partial x^2} = F \]

Elliptic Equations

Parabolic Equation

\[\frac{\partial T}{\partial t} = K \frac{\partial^2 T}{\partial x^2} \]

Note that heat flux \(\dot{Q} = \frac{\partial T}{\partial x} \)

A large heat flux heats up a small heat flux where \(T(x, t) \) is temperature and \(K \) is called diffusivity.

Example: An infinitely long bar heated at one end

\[x = 0 \quad x \to \infty \]

Suppose \(T(x, 0) = 0 \)

There is a similarity solution of the differential equation where \(\eta = \frac{2\sqrt{RT}}{x} \)

Then \(\frac{\partial T}{\partial \eta} = \frac{\partial T}{\partial x} \frac{\partial x}{\partial \eta} = -4RT \frac{1}{3} \theta'(\eta) = -2 \frac{1}{x} \theta'(\eta) \)

\[\frac{\partial T}{\partial x} = \frac{d\theta}{d\eta} \frac{\partial x}{\partial \eta} = \frac{1}{2RT} \theta''(\eta), \quad \frac{\partial^2 T}{\partial x^2} = \frac{1}{2RT} \theta''(\eta) = 4RT \theta''(\eta) \]

\[= K \frac{\partial^2 T}{\partial x^2} \Rightarrow - \frac{\eta}{2c} \theta' = \frac{4RT}{2c} \theta'' \Rightarrow \theta'' + 2\eta \theta' = 0 \]

Solve with an integrating factor: \(e^{\int \frac{2c}{4RT} d\eta} = e^{\eta^2} \)

\[\Rightarrow (e^{\eta^2} \theta')' = 0, \quad \theta' = Ae^{-\eta^2} \]

\[\theta = A \int e^{t^2} dt + B, \quad \theta = a \text{erf } \eta + \beta \]

where \(\text{erf } \eta = \frac{2}{\sqrt{t}} \int_0^\eta e^{-u^2} du \geq 1 \) as \(\eta \to \infty \)

\[\theta(0) = 1 \Rightarrow \beta = 1 \]

\[\theta(x) \to 0 \Rightarrow \alpha = -1 \]

Corresponds to...
\[\Theta = 1 - \operatorname{erf}(\eta) = \operatorname{erfc}(\eta) \]

\[T = \operatorname{erfc}\left(\frac{x}{2\sqrt{\delta t}}\right) \]

The solutions at all times are similar, they have the same functional form but have a scale in the \(x \) direction that depends on \(t \). The decay length is proportional to \(\sqrt{\delta t} \).