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Dynamics web page
www.damtp.cam.ac.uk /user/stcs/dynamics.html

This web page has or will have:

e examples sheets, which I will also give out in lectures;
e any hand outs that I give out in lectures (including this one)

e notes, which I will not give out.

Note about notes

The notes on the web page are not ‘lecture notes’ or ‘notes of the course’. They cover every-
thing in the lectures, but in greater depth, and they cover more topics. You should use the
notes to supplement your lecture notes (for example, if you think the I have left out too many
steps in the algebra) or to read, in the style of the course, beyond the course (for example,
some proofs — usually not very illuminating ones that are not part of the course, or extended
discussions on the topics in the course).
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Mathematical Tripos Part TA Lent term 2011
Dynamics and Relativity Dr S.T.C. Siklos

Hand-out 1: Motion in a cubic potential

A particle of unit mass moves in a one-dimensional potential ¢(z), where

P(z) =23 — 3z.

d
The force due to this potential is —d—i (‘minus the gradient of the potential’), so the equation
of motion of the particle is
d*z do

—_— ==

— _2,.2
pTo G o o (1)

dzx
Multiplying by T and integrating with respect to time gives the first integral (the energy
integral)
%i‘2 =—¢(z)+ E

where F is a constant of integration (the total energy). This first order differental equation
can also be integrated in principle to obtain

=1

/ dz
V2E —2(z? — 3z)

This is an elliptic integral — it cannot be expressed in terms of elementary functions, though
its properties have been well-studied.

A more illuminating approach comes from considering the equation of motion to be that
of a particle of unit mass sliding under the action of gravity in a landscape the height of which
above sea-level (say) is ¢(z), as shown in the sketch. This approach works even for much
more complicated potentials, where the integration approach would be unhelpful, and also for
potentials that are functions of two variables.

The kinetic energy, and hence speed, of the particle is represented by the difference
between the ‘height’ of the potential function and the fixed ‘height’ given by the total energy
of the particle. At the points where these two heights coincide, the particle has zero speed
but non-zero acceleration unless the point is a stationary point of the potential. For a smooth
potential function, the particle will reverse when reaching such a point or, if it is a stationary
point, will take an infinite amount of time to get there.



From the diagram, we can see the following possibilities (there are many others), depending
on the initial conditions. For convenience, the initial conditions are given in terms of zy and
E, rather than zg and .

(i) zo0 < a, &9 > 0, E = 1. In this case, the particle slows down until its velocity is reversed
when = = a (see diagram); it then goes off to z = —oc.

(ii) 2o = a, F = 1. The particle, initially stationary, sets off towards —oo, gathering speed.
(iii) @ < g < b, E = 1. This is not possible: the particle does not have sufficient energy
(classically) to exist in this part of the z-axis.

(iv) b <z < ¢, E = 1. The particle oscillates between b and c.

(v) zg > ¢, E = 1. Again, not possible.
(vi) E = 3. The particle ends up at —oc either directly if o < 0, or after bouncing off the
potential if g > 0.

(vii) E = 2, zg = —1. Note that the turning points of ¢(x) are at +1. In this case the particle
has no kinetic energy and just stays put. It is in unstable equilibrium, as is obvious from the
diagram. This can be checked analytically. Let # = —1 + ¢, where ¢ < 1. Then, substituting
into the equation of motion (1), we have

d?
F(ul +€) =—3(—1+¢€)%+3 =~ +6¢
so € ~ egcosh /6(t — to), which grows grows exponentially. Small perturbations from the
equilibrium will therefore in general become large, which means the equilibrium is unstable.
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Mathematical Tripos Part IA Lent term 2011
Dynamics and Relativity Dr S.T.C. Siklos
Hand-out 3: Projectile with linear drag

A particle of mass m is projected from the origin at velocity u. The gravitational acceleration
is denoted by g and the drag force is —mkv, where k is a constant (the m is included here for

convenience).
The equation of motion (Newton's second law) is
mdv m mk ie s + kv
— = v .6, _— =g.
i~ "8 dt &

We can solve this equation using an integrating factor, as if it were an ordinary (non-
vector) differential equation. We first rewrite it as

%(ektv) = it

then integrate and multiply by e~*t:
1
v = Eg T+ Ce ™™

where C is a constant (vector) of integration which can be identified using the initial condition
on the velocity which we take to be v =u at t = 0. Thus

1 1
Vg (u— *&:g)e_kt-
This equation can be integrated directly to give r:
ot 1 |
r=.g k(u kg)e +d

where d is a (vector) constant of integration which can be identified using the initial condition
on the position which we take to be r = 0 at £ = 0. Thus

t 1 1 fy
= —pg — — — — =) *
r=rg-p(u-zele ) (*)
This is the complete solution. Choosing axes such that
T 0 U COS &
r= ¥y g=120 and u= 0 ;
z —g usin e

the solution is
o= %ucosa (1 - e_kt) . y=0, o= —%‘t - % (usina -+ %) (l — e'kt) :

This looks a bit more complicated than the k = 0 case, but it is has some expected
features. For very large ¢, in the sense k¢ > 1, the exponential terms can be ignored and (in
this approximation) the particle drops vertically at its terminal speed of g/k; the horizontal
component has been completely eroded by the frag force.

For small k (i.e. kt < 1), we should retrieve the projectile-without-drag solution. At
first sight, this limit looks bad because of the k in the denominator. However, if we expand
the exponential in the vector form of the solution (x) as far as the quadratic terms we see that
the limit is in fact defined (as it must be):

r= g p(u- g1kt + 3@+ — 1)

= ut + 3gt* + O(kt).

This is the solution that we would have obtained by solving the equations of motion with
k=10
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Mathematical Tripos Part IA Lent term 2011
Dynamics and Relativity Dr S.T.C. Siklos

Hand-out 4: motion of a point charge in a uniform electromagnetic field
We wish to solve
mi = e(E + 1 x B) (*)

in the case when E and B are constant (in time) and uniform (same at all points in space).
The practical way to integrate the questions is to work in components, BUT it is essential
to choose sensible axes. Since the lines of B are everywhere parallel, we can choose axes such
that the z axis is parallel to B:
B = (0,0, B)

If E.B = 0, we can choose axes such that E = (E,0,0), but in general the best we can do (by
rotating the z and y axes, which is the only freedom left after fixing the 2 axis ) is

E = (E1,0, E).

With this choice, the equation of motion (*) becomes

mi = eF) + eBy (1)
mj=  —eBz (1)
mz = els

which can be solved by ele-menta.ry means or by using matrices.
The solution to third equation can be written down:

z = (e/2m)t*Es + at + b

where a and b are constants obtainable from initial conditions.

A neat way to solve the (1) and (), which happens to work in this case, is to set { = z+1iy,
and add 4 times equation (1) to equation (1); of course, one could always (for any pair of linear
equations) do this to obtain a single complex equation containing both £ and £, but the special
feature of our equations is that the result does not contain £:

mé = eE) — ieB€,
which can be integrated straight away:
£ =pe ™ —iEit/B+q

where w = eB/m and the complex constants p and g can be obtained from the initial condi-
tions.!
If the particle is initially at the origin, and moving in the y-direction, we find

£ =ple™™* - 1) —ikt,
where k = E;/B and p is real, so
x = p(coswt — 1), y = —psinwt — kt.

This is roughly (exactly if & = p) a cycloid, so the motion of the partical is, somewhat
counter intuitively, a uniform acceleration parallel to B and cycloidal motion in the plane
perpendicular to B.

1w is called the Larmor frequency after the physicist Joseph Larmor, senior wrangler in 1880, Lucasian
Professor from 1903-1932.
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Mathematical Tripos Part TA Lent term 2011
Dynamics and Relativity Dr S.T'.C. Siklos
Hand-out 5: Orbits in a non-inverse square force law.

In this example, we consider the following modification to Newtonian gravity:

k a

f(‘f‘) — _T’_2 = ;Zs
where kK = GM as usual.
The u(f) equation is
({ZU k G'U? 1 2 9
—i = — — - /\
—F U=t Z(1+ u?)

where ¢ = h?/k and A = ak/h*. The reason for writing the right hand side in this form is that
A is a dimensionless parameter (note that ¢ has dimensions of length).

If we had chosen the additional term in the force to be proportional to =3 instead of
r—*, we could have integrated the u-df equation; but, with the u? term on the right hand side,
we cannot. Instead, we will obtain an approximation to the solution in the case A << 1.

In the absence of the extra term (i.e. if A = 0) we would obtain a solution corresponding
to a Newtonian orbit, namely an ellipse. Our approximate solution will look very like an
ellipse, but one that is slowly rotating in its own plane. We will calculate the rate of rotation.

We can therefore approximate the solution by iteration. The unperturbed solution is the
Newtonian solution

—4

u={¢"1(1+ecosh)

where ¢ = h%/k. We may verify that
u=£¢"11+ecos((1-A))f)

satisfies, approximately, the orbital equation [no need to do this — it is not the point of this
example]. For the approximation, we use cos(A@) ~ 1 and sin \d ~ A\d and ignore terms in A%,

At r = rpn (the perihelion, for a planetary orbit), cos(1 — A)# = 1. If the first is when
# = 0, then the second is when (1 — \)# = 27, i.e. when § = 27(1 + A). The approximate
solution is therefore the ellipse corresponding to the unperturbed solution rotating slowly at
the rate of 27 A radians per orbit.

In fact, this modification to Newtonian gravity, with a = 3GM/c? (M is the mass of
the sun), is the exact equation for a planetary orbit in General Relativity (a geodesic in the
Schwarzschild solution).

For most astrophysical situations, the extra term is small. Nevertheless, planetary or-
bits have been observed for many centuries and even very small non-Newtonian affects are
detectable.

Putting in the data for Mercury gives A &~ 10”7 and an advance of 43 arc second per
century. Remarkably, it was known several decades before general relativity was formulated
that out of a total observed precession of 5000 arc seconds per century, only 43 arc seconds are
unexplained by Newtonian effects (such as the influence of other planets). The eccentricity of
the orbit of Mercury is about 0.2 (compare with 0.016 for the Earth) and it is the least circular
of any of the planetary orbits. Nevertheless, the accuracy of the observations is astounding.
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Mathematical Tripos Part IA Lent term 2011
Dynamics and Relativity Dr S.T.C. Siklos

Hand-out 6: Coriolis effect on a falling body

We consider the effect of the coriolis force on a particle dropped from a fixed point in the
rotating frame of the Earth — the top of a tower, say (as in Galileo’s experiment). In the
rotating frame, the appropriate equation of motion, omitting the centrifugal and varying
angular velocity terms (both of which are negligible unless the tower is enormous).

r=g—2wxr (%)

where r and its derivatives are all relative to the rotating frame. We can integrate () directly

once:
t—(0) = gt — 2w x 1 + 2w x r(0). (+%)

We are considering a dropped particle, so we take r(0) = 0. Let r(0) = rg.

We could at this point simply lurch into components and integrate the system of first
order equations but since we are already ignoring terms of O(w?) by omitting the centrifugal
acceleration, we can do better. Substituting (%) into () gives

f=g— 2w x (gt — 2w x (r —rg))
and ignoring the last term —2w X (r — rg), (which is small compared with gt), we obtain
r=g - 2w x gt.
This equation can be integrated twice directly:
r= %—gtz - %w X gt3 + rop.
Now at last we take choose axes. We will assume for simplicity that our tower is at the
equator. Our axial directions at the top or bottom of the tower are, as usual:

e easterly; eg northerly; ey radially outwards;

which form a right-handed set.
With respect to these axes,

g=(0,0,-g), w=(0,w,0), ro=(0,0,R+Ah), r=(z,y,2)

where R is the radius of the Earth and h is the height of the tower (above the surface of the
Earth). Thus

T 0 1 0
y| =192 0 | +dwgt® O] + 0 (1)
z —l 0 R+ h

To this approximation (ignoring the curvature of the Earth) the surface of the Earth is z = R.!
Substituting z = R into the third component of the () reveals that the approximate descent
time is y/2h/g, as in the non-rotating case. At this time,

o 2v/2 whd/?
T= = 5
which is the distance eastwards from the bottom of the tower at which the particle lands.?
This can easily be understood in the inertial (non-rotating) frame. Just before being
dropped, the particle is at radius (R + h) and co-rotating, so it has angular momentum per
unit mass (R+ h)%w. As it falls, its angular momentum is conserved (the only force is central),
so its speed v on landing is given by vR = (R + h)?w. Therefore, its speed in the (eastward)
direction of rotation increases from (R + h)w to (R + h)*w/R and it gets ahead of the tower.

"The z axis is in fact tangent to the surface so for a very high tower we would have to take into account the
curvature of the surface of the Earth to find the value of z that corresponded to hitting the ground again.
2About 55c¢m for a particle dropped from the Burj Dubai.
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Mathematical Tripos Part 1A Lent term 2011
Dynamics and Relativity Dr S.T.C. Siklos

Hand-out 7: Drum majorette’s baton

We model the baton as a light rod of length ¢ with masses m; and mj attached to the ends. What
happens when the baton is thrown up into the air?
Let y, and y; be the position vectors of the two masses with respect to the centre of mass.
Then
myy1 + mays = 0.

Setting |y:| = i, we have y; + y; = £ and (from the above equation)
my1y1 = maya.

The external force on the system is the uniform gravitational field g. The internal force
between the particles is the stress or tension in the light rod. This force is central: it acts in the
direction of the vector joining the two particles.

Let R be the position of the centre of mass. We know that

MR = F® = mig + mog = Mg

so the centre of mass moves exactly as if it were a single particle of mass M in a gravitational field.
Since the rod is rigid, the two masses are rotating about the centre of mass with the same
angular velocity w. The velocity of the mass m; with respect to the centre of mass is therefore
w X y; and
Hy = myyr % (w x y1) + may2 X (w X y2)

The axis of rotation is perpendicular to the rod; since the rod is thin and the masses are particles
they cannot rotate about an axis parallel to the rod. Expanding the vector products in the above
equation and using w - y; = 0 shows that

Hy = (mayf + maysw. ("l

The centre of mass is fixed in the rod, so y? and y? are constant.
The gravitational torque Gp; about the centre of mass is

y1 X (m1g) +y2 x (mag) = (miy1 + mayz2) x g =0.

Thus the angular momentum about the centre of mass of the baton is constant and, from (%), w is
constant. Hence @ is constant in the motion, where # is the angle the baton makes with the vertical,
and 0] = |w|.

The time lapse photograph below shows this nicely: the centre of mass moves on a parabola
and the angle of the rod changes by the same amount between each exposure.
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Mathematical Tripos Part TA Lent term 2010
Dynamics and Relativity Dr S.T.C. Siklos

Hand-out 8: Rolling disc

A uniform disc of mass m and radius a rolls without slipping down a line of greatest slope of
an inclined plane of angle a. The plane of the disc is vertical. The moment of inertial of the
disc about and axis through its centre perpendicular to the plane of the disc is I.

The motion of the disc consists of the linear motion of the centre of mass, which moves
with speed V down the plane, and rotation about the centre of mass with angular speed w,
as shown. The angular velocity vector sticks out of the paper (right-handed corkscrew rule).

The point on the circumference of the disc that is instantaneously in contact with the
plane is instantaneously at rest, because of the no-slip condition. This means that V' and w
are related by

V-aw=0.

This comes from V + w x y = 0, were y is the position vector of the instantaneous point
of contact with respect to the centre of the disc. Taking instead the instantaneous point of
contact as the origin, this equation says that the velocity the centre of mass is due to the
rotation with angular velocity of w about the point of contact.

Using conservation of energy
The kinetic energy (using the result that the total KE is ‘KE of centre of mass’ plus KE
relative to centre of mass) of the disc is

ImV2 4 410? = imV? + § I(V/a)® = }(I/a® + m)V2.

Let z be the distance down the plane that the disc has rolled at time ¢, so that 2 = V.
Then conserving energy gives

%(J’/u2 +m)i? — mgzsina = constant

(The minus sign arises because  measure distance down the plane.) Curiously, the quickest
way to integrate this is to differentiate it and cancel a factor of z, leaving a linear equation:

(I/a* 4 m)i = mgsina

which can then be integrated twice. We see that the acceleration of a rolling disc is less, by a
factor of 1 + I/maQ, than that of the same disc sliding without rolling down the same plane.



Using forces
The external forces on the disc are shown in the diagram below.
Again regarding the disc as a system of particles, we have the general results

MR = F¢

where M is the total mass, R is the position of the centre of mass and F¢ is the sum of the
external forces, and

where Hjys is the total angular momentum about the centre of mass and G is the total
external torque about the centre of mass (i.e. the total moment of the external forces).

'

Mg

The forces acting are gravity, friction and normal reaction. Thus

mV = Mgsina — F
Iw = aF.

Eliminating F' from these equations, and using w = V/a gives
(m+ I/a®)V = mgsina (1)

which is the same equation as motion as that derived using conservation of energy.
We could have obtained this same result more directly using again

H=G

where now the angular momentum and the torque are about the point of contact between the
disc and the plane. Again H = I'w, but I’ is the moment of inertial of the disc about an axis
pointing out of the paper and passing through the point of contact, which by the parallel axis
theorem is given by

I' = I+ mad.

This gives the same equation as (f), since the shortest distance between the line of action of
the force of gravity acting through the centre of the disc and the point of contact is asin a.

Note that the w in this calculation is the same as the w that led to (1), because angular
velocity is the same for all points on the disc.
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