
More Efficient Amortization of
Exact Zero-Knowledge Proofs for

LWE
Jonathan Bootle

Joint work with Vadim Lyubashevsky, Ngoc Khanh Nguyen and Gregor Seiler

(IBM Research – Zurich)

Zero-knowledge proofs and arguments

𝑥1 = 4
𝑥2 = 1

⋮

P V

Prover Verifier

10

2

Instance

Witness

Completeness: if the
witness is valid, the

verifier accepts

Soundness: if the
instance has no solution,

the verifier rejects

Zero-knowledge: the prover’s messages
leak nothing about the witness

Knowledge Soundness:
the prover must know a

witness

The Search LWE Problem

• Instance: 𝐴 ∈ ℤ𝑝
𝑛×𝑚 and 𝑏 ∈ ℤ𝑝

𝑛

• Witness: short 𝑠 ∈ ℤ𝑚 and 𝑒 ∈ ℤ𝑛 such that 𝑏 = 𝐴𝑠 + 𝑒

• Hard for quantum-computers

• Worst-to-average case reductions

• Used to construct signatures, encryption, FHE and much more
3

= +

𝑏 𝐴 𝑠 𝑒

Amortised case:

Prove knowledge of solutions
to 𝐴, 𝑏1 , … , (𝐴, 𝑏𝑟)

Types of Proofs

4

Algebraic

One shot

Relaxed

Tailored for LWE
instances

Post-quantum

Combinatorial

Multi shot

Exact

Tailored for LWE
instances

Post-quantum

IOPs + Hash

One shot

Exact

Target NP
problems

Post-quantum

Classical

One shot

Exact

Target many
problems

Quantum insecure

Relaxed: Shows prover knows less short
(𝑠, 𝑒) solution to (𝐴, 𝑡𝑏)

Multi shot: Needs repeating to boost
soundness

Overview of Approach

5

= +This work
Algebraic

proofs
[BLS19]

IOP-style
commitments
[BCGGHJ17]

One shot
Tailored to LWE

Exact
Post-quantum

Results

• Asymptotic (𝑛 ×𝑚 matrix 𝐴)

• Concrete proof size per instance

6

Instances Prover time Verifier time Proof size

1 𝑂 𝑚𝑛 ops in ℤ𝑝 𝑂 𝑚𝑛 ops in ℤ𝑝 𝑂 𝑚 elems in ℤ𝑝

𝑟 𝑂 𝑟𝑚𝑛 ops in ℤ𝑝 𝑂 𝑚𝑛 +𝑚𝑟 ops in ℤ𝑝 𝑂 𝑚 + 𝑟 elems in ℤ𝑝

[ENS20] [LNS21] This work

47KB 33KB 2.3KB

Overview of Approach

7

= +This work
Algebraic

proofs
[BLS19]

IOP-style
commitments
[BCGGHJ17]

One shot
Tailored to LWE

Exact
Post-quantum

A Basic Schnorr-like Proof

Instance: commitment 𝑆
Witness: 𝑠 ∈ ℤ𝑝

𝑚 with 𝑆 = 𝑐𝑜𝑚(𝑠)

Choose random 𝑡 ∈ ℤ𝑝
𝑚

Compute 𝑇 = 𝑐𝑜𝑚(𝑡)

𝑇

𝑥
Choose random 𝑥 ∈ ℤ𝑝

𝑓 = 𝑥𝑠 + 𝑡
Check that
𝑐𝑜𝑚 𝑓 = 𝑥𝑆 + 𝑇

𝑓

P V

Prover Verifier

Extending to LWE instances

• Use masked opening 𝑓 = 𝑠𝑥 + 𝑡 to check useful conditions

𝑠 ∈ 0,1 𝑚

⇕
𝑠 ∘ 1𝑚 − 𝑠 = 0𝑚

⇕
𝑓 ∘ 𝑥 ⋅ 1𝑚 − 𝑓
= 𝑥2 ⋅ 0𝑚 + 𝑥 ⋅ 𝑢 + 𝑣

Check 𝑓 ∘ 𝑥 ⋅ 1𝑚 − 𝑓
is linear in 𝑥

𝑏 = 𝐴𝑠 + 𝑒
⇕

𝑒 = 𝑏 − 𝐴𝑠
⇕

𝑔 = 𝑥 ⋅ 𝑏 − 𝐴𝑓

Compute masked
opening 𝑔 of 𝑒 from 𝑓

𝑒 ∈ 0,1 𝑛

⇕
𝑒 ∘ 1𝑛 − 𝑒 = 0𝑛

⇕
𝑔 ∘ 𝑥 ⋅ 1𝑛 − 𝑔
= 𝑥2 ⋅ 0𝑛 + 𝑥 ⋅ 𝑦 + 𝑧

Check 𝑔 ∘ 𝑥 ⋅ 1𝑛 − 𝑔
is linear in 𝑥

Prover commits to blue
values before seeing 𝑥

Proof for a Single LWE Instance

Instance: LWE instance (𝐴, 𝑏)
Witness: 𝑠, 𝑒 with 𝑏 = 𝐴𝑠 + 𝑒

Compute 𝑆 = 𝑐𝑜𝑚(𝑠)
Choose random 𝑡 ∈ ℤ𝑝

𝑚 , compute 𝑇 = 𝑐𝑜𝑚(𝑡)

Compute 𝑓 ∘ 𝑥 ⋅ 1𝑚 − 𝑓 = 𝑥 ⋅ 𝑢 + 𝑣
Compute 𝑔 = 𝑥 ⋅ 𝑏 − 𝐴𝑓
Compute 𝑔 ∘ 𝑥 ⋅ 1𝑛 − 𝑔 = 𝑥 ⋅ 𝑦 + 𝑧
Compute commitments 𝑈, 𝑉, 𝑌, 𝑍 to 𝑢, 𝑣, 𝑦, 𝑧

𝑆, 𝑇, 𝑈, 𝑉, 𝑌, 𝑍

𝑥
Choose random 𝑥 ∈ ℤ𝑝

𝑓 = 𝑥𝑠 + 𝑡
Compute 𝑔 = 𝑥𝑏 − 𝐴𝑓
Check that 𝑐𝑜𝑚 𝑓 = 𝑥𝑆 + 𝑇

𝑐𝑜𝑚 𝑓 ∘ 𝑥1𝑚 − 𝑓 = 𝑥𝑈 + 𝑉

𝑐𝑜𝑚 𝑔 ∘ 𝑥1𝑚 − 𝑔 = 𝑥𝑌 + 𝑍

𝑓

P V

Prover Verifier

Proof for many
instances

embeds many
secrets 𝑠 into 𝑓

using
interpolation

Overview of Approach

11

= +This work
Algebraic

proof
[BLS19]

Commitment
scheme

[BCGGHJ17]

One shot
Tailored to LWE

Exact
Post-quantum

The commitment scheme

Encode rows using
Reed-Solomon code

Commit to columns using hash functionProver messages to commit

… …

𝑠

𝑡

𝑚

Commitment openings
Prover messages to commit

𝑠

𝑡

𝑚

Linear
combination

Verifier
encodes

Prover sends to verifier

𝑓 = 𝑠𝑥 + 𝑡
Verifier checks consistency

Verifier
takes linear
combination

Prover opens random columns for verifier

… …

?= ?= ?=

How can the prover cheat?
Hash vectors which aren’t valid encodings

…

Forcing valid encodings with a proximity test
Hash vectors which aren’t valid encodings

…

‘Taking random linear
combinations preserves farness

with high probability’

Prover sends extra random
linear combination

Verifier checks consistency

Verifier
encodes

Original masked opening is
enough for proximity

Zero Knowledge Sketch

Encode rows and extra
randomness with

Reed-Solomon code Commit to columns and extra
randomness using hash function

Prover messages to commit

…

𝑠

𝑡

𝑚

…

Opening a few columns leaks no
information on messages

Extra randomness

Extra
randomness

Unopened commitments leak no
information on messages

Thanks!

• Asymptotic

• Concrete proof size per instance

• https://ia.cr/2020/1449
17

Instances Prover time Verifier time Proof size

1 𝑂 𝑚𝑛 ops in ℤ𝑝 𝑂 𝑚𝑛 ops in ℤ𝑝 𝑂 𝑚 elems in ℤ𝑝

𝑟 𝑂 𝑟𝑚𝑛 ops in ℤ𝑝 𝑂 𝑚𝑛 +𝑚𝑟 ops in ℤ𝑝 𝑂 𝑚 + 𝑟 elems in ℤ𝑝

[ENS20] [LNS21] This work

47KB 33KB 2.3KB

https://ia.cr/2020/1449

