More Efficient Amortization of

Exact Zero-Knowledge Proofs for
LWE

Jonathan Bootle
Joint work with Vadim Lyubashevsky, Ngoc Khanh Nguyen and Gregor Seiler
(IBM Research — Zurich)

/ero-knowledge proofs and arguments

10

Witness

Instance 1’

v

A

P V

v

Completeness: if the

witness is valid, the

verifier accepts Prover Verifier

Zero-knowledge: the prover’s messages
leak nothing about the witness

Soundness: if the
instance has no solution,
the verifier rejects

Knowledge Soundness:
the prover must know a
withess

The Search LWE Problem Amortised case:

Prove knowledge of solutions
to (4,by), ..., (4, b,)

* Instance: A € ngm and b € Z3

e Witness: shorts € Z™ and e € Z" suchthat b = As + e
b A S e

|

* Hard for quantum-computers
* Worst-to-average case reductions
e Used to construct signatures, encryption, FHE and much more

Types of Proofs

Algebraic Combinatorial
One shot Multi shot
Relaxed Exact

Relaxed: Shows prover knows less short
(s, e) solution to (4, th)

Multi shot: Needs repeating to boost
soundness

IOPs + Hash
One shot
Exact

Target NP
problems

Post-quantum

Classical
One shot
Exact

Target many
problems

Quantum insecure

4

Overview of Approach

Algebraic |OP-style
Thiswork = oroofs + commitments
[BLS19] [BCGGHJ17]
One shot Exact

Tailored to LWE Post-quantum

Results

e Asymptotic (n X m matrix A)

Instances Prover time Verifier time Proof size
1 O(mn) ops in Z, O(mn) ops in Z, O(m) elems in Z,
r O(rmn) opsinZ, | O(mn + mr) opsinZ, | O(m + 1) elemsinZ,

* Concrete proof size per instance

[ENS20] | [LNS21] This work
47KB 33KB 2.3KB

Overview of Approach

Algebraic |OP-style
This work proofs commitments
[BLS19] [BCGGHJ17]
One shot Exact

Tailored to LWE Post-quantum

A Basic Schnorr-like Proof

Instance: commitment S
Witness: s € Z3' with § = com(s)

P V

Prover Verifier
Choose random t € Zg" T
Compute T = com(t) .
X
< Choose random x € Zp
f=xs+t f

v

Check that
com(f) =xS+T

Extending to LWE instances

Prover commits to blue
values before seeing x

* Use masked opening f = sx + t to check useful conditions

s € {0,1}™
()
so(1IMm—5s)=0m
)

folx-1"—f

Check fo(x-1™—f)
is linear in x

b=As+ e
()
e =b— As
)
g=x-b—Af

Compute masked
opening g of e from f

e € {0,1}"
()
eo (1" —e) = 0"
()

ge(x-1"—g

Check go (x-1™" — g)
is linear in x

Proof for a Single LWE Instance

Instance: LWE instance (4, b)
Witness: s, e withb = As + e

P

Prover

Compute § = com(s)

Choose random t € Z,', compute T = com(t)

Compute fo(x- 1M —-—f)=x-u+v STUV,Y,Z
Compute g = x - b — Af
Computego(x-1"—g)=x-y+z
Compute commitments U,V,Y,Ztou,v,y,z X

P
<«

v

v

f=xs+t

\V Proof for many
instances
embeds many
secrets sinto f
using
interpolation

Verifier

Choose random x € Zp

Compute g = xb — Af

Check that com(f) = xS+ T
com(fo(x1™—f))=xU+V
com(go(x1™—g))=x¥Y +Z

Overview of Approach

Algebraic Commitment
This work — proof scheme
[BLS19] [BCGGHJ17]
One shot Exact

Tailored to LWE Post-quantum

The commitment scheme

Prover messages to commit Commit to columns using hash function
S

t

m
Encode rows using

Reed-Solomon code

Commitment openings

Prover messages to commit Prover opens random columns for verifier

S

v

t

m

g% Verifier gs

Linear

takes linear

combination ..
combination

Prover sends to verifier = = =

f=sx+t Verifier
encodes Verifier checks consistency

How can the prover cheat?

Hash vectors which aren’t valid encodings

Forcing valid encodings with a proximity test
Hash vectors which aren’t valid encodings
L L
Original masked opening is . .
enough for proximity

combinations preserves farness
O with high probability’ |

Prover sends extra random
linear combination

/ Verifier
encodes

‘Taking random linear

Verifier checks consistency

/ero Knowledge Sketch

Prover messages to commit

S
Extra
t — >
randomness
m

Encode rows and extra
randomness with
Reed-Solomon code

Opening a few columns leaks no
information on messages

Extra randomness

Commit to columns and extra
randomness using hash function

Unopened commitments leak no
information on messages

Thanks!

* Asymptotic

Instances Prover time Verifier time Proof size
1 O(mn) ops in Z, O(mn) ops in Z, O(m) elems in Z,
r O(rmn) opsinZ, | O(mn + mr) opsinZ, | O(m + 1) elemsinZ,

* Concrete proof size per instance

[ENS20] | [LNS21] | This work
47KB 33KB 2.3KB

* https://ia.cr/2020/1449

17

https://ia.cr/2020/1449

