More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE

Jonathan Bootle

Joint work with Vadim Lyubashevsky, Ngoc Khanh Nguyen and Gregor Seiler

(IBM Research – Zurich)

Zero-knowledge proofs and arguments

leak nothing about the witness

The Search LWE Problem

Amortised case:

Prove knowledge of solutions to $(A, b_1), \dots, (A, b_r)$

- Instance: $A \in \mathbb{Z}_p^{n \times m}$ and $b \in \mathbb{Z}_p^n$
- Witness: short $s \in \mathbb{Z}^m$ and $e \in \mathbb{Z}^n$ such that b = As + e

- Hard for quantum-computers
- Worst-to-average case reductions
- Used to construct signatures, encryption, FHE and much more

Types of Proofs

Algebraic	Combinatorial	IOPs + Hash	Classical
One shot	Multi shot	One shot	One shot
Relaxed	Exact	Exact	Exact
Relaxed: Shows prover knows less short (s, e) solution to (A, tb)		Target NP problems	Target many problems
Multi shot: Needs repeating to boost soundness		Post-quantum	Quantum insecure

Overview of Approach

One shot Tailored to LWE Exact Post-quantum

Results

• Asymptotic ($n \times m$ matrix A)

# Instances	Prover time	Verifier time	Proof size
1	$\mathit{O}(mn)$ ops in \mathbb{Z}_p	$\mathit{O}(mn)$ ops in \mathbb{Z}_p	$\mathit{O}(m)$ elems in \mathbb{Z}_p
r	$O(rmn)$ ops in \mathbb{Z}_p	$O(mn+mr)$ ops in \mathbb{Z}_p	$O(m+r)$ elems in \mathbb{Z}_p

• Concrete proof size per instance

[ENS20]	[LNS21]	This work
47KB	33KB	2.3KB

Overview of Approach

A Basic Schnorr-like Proof

Extending to LWE instances

Prover commits to blue values before seeing *x*

• Use masked opening f = sx + t to check useful conditions

Proof for a Single LWE Instance

Overview of Approach

The commitment scheme

Commitment openings

How can the prover cheat?

Hash vectors which aren't valid encodings

Forcing valid encodings with a proximity test

Hash vectors which aren't valid encodings

Zero Knowledge Sketch

Opening a few columns leaks no information on messages

Thanks!

• Asymptotic

# Instances	Prover time	Verifier time	Proof size
1	$\mathit{O}(mn)$ ops in \mathbb{Z}_p	$\mathit{O}(\mathit{mn})$ ops in \mathbb{Z}_p	$\mathit{O}(m)$ elems in \mathbb{Z}_p
r	$\mathit{O}(\mathit{rmn})$ ops in \mathbb{Z}_p	$O(mn+mr)$ ops in \mathbb{Z}_p	$O(m+r)$ elems in \mathbb{Z}_p

• Concrete proof size per instance

[ENS20]	[LNS21]	This work
47KB	33KB	2.3KB

• <u>https://ia.cr/2020/1449</u>