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Zero-knowledge proofs and arguments

𝑥1 = 4
𝑥2 = 1

⋮

P V

Prover Verifier
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Instance

Witness

Completeness: if the 
witness is valid, the 

verifier accepts

Soundness: if the 
instance has no solution, 

the verifier rejects

Zero-knowledge: the prover’s messages 
leak nothing about the witness

Knowledge Soundness:
the prover must know a 

witness



The Search LWE Problem

• Instance: 𝐴 ∈ ℤ𝑝
𝑛×𝑚 and 𝑏 ∈ ℤ𝑝

𝑛

• Witness: short 𝑠 ∈ ℤ𝑚 and 𝑒 ∈ ℤ𝑛 such that 𝑏 = 𝐴𝑠 + 𝑒

• Hard for quantum-computers

• Worst-to-average case reductions

• Used to construct signatures, encryption, FHE and much more
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𝑏 𝐴 𝑠 𝑒

Amortised case: 

Prove knowledge of solutions 
to 𝐴, 𝑏1 , … , (𝐴, 𝑏𝑟)



Types of Proofs
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Algebraic

One shot

Relaxed 

Tailored for LWE 
instances

Post-quantum

Combinatorial

Multi shot

Exact

Tailored for LWE 
instances

Post-quantum

IOPs + Hash

One shot

Exact

Target NP 
problems

Post-quantum

Classical

One shot

Exact

Target many 
problems

Quantum insecure

Relaxed: Shows prover knows less short
(𝑠, 𝑒) solution to (𝐴, 𝑡𝑏)

Multi shot: Needs repeating to boost 
soundness



Overview of Approach
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Algebraic 

proofs 
[BLS19]

IOP-style
commitments 
[BCGGHJ17]

One shot
Tailored to LWE

Exact
Post-quantum



Results

• Asymptotic (𝑛 ×𝑚 matrix 𝐴)

• Concrete proof size per instance
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# Instances Prover time Verifier time Proof size

1 𝑂 𝑚𝑛 ops in ℤ𝑝 𝑂 𝑚𝑛 ops in ℤ𝑝 𝑂 𝑚 elems in ℤ𝑝

𝑟 𝑂 𝑟𝑚𝑛 ops in ℤ𝑝 𝑂 𝑚𝑛 +𝑚𝑟 ops in ℤ𝑝 𝑂 𝑚 + 𝑟 elems in ℤ𝑝
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Overview of Approach
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Algebraic 

proofs 
[BLS19]

IOP-style
commitments 
[BCGGHJ17]

One shot
Tailored to LWE

Exact
Post-quantum



A Basic Schnorr-like Proof

Instance: commitment 𝑆
Witness: 𝑠 ∈ ℤ𝑝

𝑚 with 𝑆 = 𝑐𝑜𝑚(𝑠)

Choose random 𝑡 ∈ ℤ𝑝
𝑚

Compute 𝑇 = 𝑐𝑜𝑚(𝑡)

𝑇

𝑥
Choose random 𝑥 ∈ ℤ𝑝

𝑓 = 𝑥𝑠 + 𝑡
Check that
𝑐𝑜𝑚 𝑓 = 𝑥𝑆 + 𝑇

𝑓

P V

Prover Verifier



Extending to LWE instances

• Use masked opening 𝑓 = 𝑠𝑥 + 𝑡 to check useful conditions

𝑠 ∈ 0,1 𝑚

⇕
𝑠 ∘ 1𝑚 − 𝑠 = 0𝑚

⇕
𝑓 ∘ 𝑥 ⋅ 1𝑚 − 𝑓
= 𝑥2 ⋅ 0𝑚 + 𝑥 ⋅ 𝑢 + 𝑣

Check 𝑓 ∘ 𝑥 ⋅ 1𝑚 − 𝑓
is linear in 𝑥

𝑏 = 𝐴𝑠 + 𝑒
⇕

𝑒 = 𝑏 − 𝐴𝑠
⇕

𝑔 = 𝑥 ⋅ 𝑏 − 𝐴𝑓

Compute masked 
opening 𝑔 of 𝑒 from 𝑓

𝑒 ∈ 0,1 𝑛

⇕
𝑒 ∘ 1𝑛 − 𝑒 = 0𝑛

⇕
𝑔 ∘ 𝑥 ⋅ 1𝑛 − 𝑔
= 𝑥2 ⋅ 0𝑛 + 𝑥 ⋅ 𝑦 + 𝑧

Check 𝑔 ∘ 𝑥 ⋅ 1𝑛 − 𝑔
is linear in 𝑥

Prover commits to blue 
values before seeing 𝑥



Proof for a Single LWE Instance

Instance: LWE instance (𝐴, 𝑏)
Witness: 𝑠, 𝑒 with 𝑏 = 𝐴𝑠 + 𝑒

Compute 𝑆 = 𝑐𝑜𝑚(𝑠)
Choose random 𝑡 ∈ ℤ𝑝

𝑚 , compute 𝑇 = 𝑐𝑜𝑚(𝑡)

Compute 𝑓 ∘ 𝑥 ⋅ 1𝑚 − 𝑓 = 𝑥 ⋅ 𝑢 + 𝑣
Compute 𝑔 = 𝑥 ⋅ 𝑏 − 𝐴𝑓
Compute 𝑔 ∘ 𝑥 ⋅ 1𝑛 − 𝑔 = 𝑥 ⋅ 𝑦 + 𝑧
Compute commitments 𝑈, 𝑉, 𝑌, 𝑍 to 𝑢, 𝑣, 𝑦, 𝑧

𝑆, 𝑇, 𝑈, 𝑉, 𝑌, 𝑍

𝑥
Choose random 𝑥 ∈ ℤ𝑝

𝑓 = 𝑥𝑠 + 𝑡
Compute 𝑔 = 𝑥𝑏 − 𝐴𝑓
Check that 𝑐𝑜𝑚 𝑓 = 𝑥𝑆 + 𝑇

𝑐𝑜𝑚 𝑓 ∘ 𝑥1𝑚 − 𝑓 = 𝑥𝑈 + 𝑉

𝑐𝑜𝑚 𝑔 ∘ 𝑥1𝑚 − 𝑔 = 𝑥𝑌 + 𝑍

𝑓

P V

Prover Verifier

Proof for many 
instances 

embeds many 
secrets 𝑠 into 𝑓

using 
interpolation



Overview of Approach
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Algebraic 

proof 
[BLS19]

Commitment 
scheme

[BCGGHJ17]

One shot
Tailored to LWE

Exact
Post-quantum



The commitment scheme

Encode rows using 
Reed-Solomon code

Commit to columns using hash functionProver messages to commit

… …

𝑠

𝑡

𝑚



Commitment openings
Prover messages to commit

𝑠

𝑡

𝑚

Linear 
combination

Verifier
encodes

Prover sends to verifier

𝑓 = 𝑠𝑥 + 𝑡
Verifier checks consistency

Verifier 
takes linear 
combination

Prover opens random columns for verifier

… …

?= ?= ?=



How can the prover cheat?
Hash vectors which aren’t valid encodings

…



Forcing valid encodings with a proximity test
Hash vectors which aren’t valid encodings

…

‘Taking random linear 
combinations preserves farness 

with high probability’

Prover sends extra random 
linear combination

Verifier checks consistency

Verifier
encodes

Original masked opening is 
enough for proximity



Zero Knowledge Sketch

Encode rows and extra 
randomness with 

Reed-Solomon code Commit to columns and extra 
randomness using hash function

Prover messages to commit

…

𝑠

𝑡

𝑚

…

Opening a few columns leaks no 
information on messages

Extra randomness

Extra 
randomness

Unopened commitments leak no 
information on messages



Thanks!

• Asymptotic

• Concrete proof size per instance

• https://ia.cr/2020/1449
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