Linear-Time Arguments with Sublinear Verification from Tensor Codes

Jonathan Bootle (IBM Research – Zurich)

Joint work with Alessandro Chiesa (UC Berkeley) and Jens Groth (Dfinity)

The holy grail for efficient arguments for NP

The holy grail for efficient arguments for NP

The holy grail for efficient arguments for NP

Obstacles

Fast Fourier transforms

Algebraic commitments

$$(w_{1}, w_{2} \dots, w_{M}) \qquad (w_{1}, w_{2}, \dots, w_{M}) \qquad (g_{1}, g_{2} \dots, g_{M}) \\ O(N) \text{ wire values} \qquad O(N) \text{ group elements} \\ \downarrow \\ p(X), q(X) \\ \text{degree } O(N) \text{ polynomials} \qquad O(N) \text{ group exponentiations} \\ \hline O(N \log N) \\ \mathbb{F} \text{ -ops} \qquad (p(\omega_{1}), \dots, p(\omega_{k})) \qquad p(X) \cdot q(X) = r(X) \\ \text{RS encodings} \qquad \text{multiplication} \qquad c = g_{1}^{w_{1}} g_{2}^{w_{2}} \cdots g_{M}^{w_{M}} \\ \text{commitment} \end{cases}$$

Exciting progress on provers without FFTs

Proof System	⊮-ops	Other ops	Proof Size
[G16,]	$O(N \log N)$	O(N) group expo	0(1)
[BCCGP16], [BBBPWM18]	O(N)	O(N) group expo	$O(\log N)$
[XZPPS19]	O(N)	O(N) group expo	$O(D \log N)$
[S20]	O(N)	O(N) group expo	$O(\log^2 N)$

N-gate arithmetic circuits over $\mathbb F$

- Close to the holy grail, but not quite linear-time...
- Excellent concrete efficiency!

A ray of hope

•

• [BCGGHJ17] cryptographic argument:

Indexer complexity	er complexity Prover complexity Verifier complexity		Proof size
$O(N)$ \mathbb{F} -ops	$O(N)$ \mathbb{F} -ops	$O(N^{1/2})$ \mathbb{F} -ops	$O(N^{1/2})$
[BCGGHJ17] interactiv	ve oracle proof:	$ \begin{bmatrix} AHIKV \\ O(x) \\ = O(x) \end{bmatrix} $	17] hashes N) hashing N) F-ops

Indexer complexity	Prover complexity	Verifier complexity	# Queries
$O(N)$ \mathbb{F} -ops	$O(N)$ \mathbb{F} -ops	$O(N^{1/2})$ \mathbb{F} -ops	$O(N^{1/2})$

Information theoretic

Challenge: can we construct linear-time IOPs with better query complexity?

Results

Our results

• **Corollary:** for any $\epsilon \in (0,1)$, given any linear-time CRH as a black-box, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a public-coin argument system with

Indexer complexity	Prover complexity	Verifier complexity	Proof size
$O(N)$ \mathbb{F} -ops	$O(N)$ \mathbb{F} -ops	$O(N^{\epsilon})$ \mathbb{F} -ops	$O(N^{\epsilon})$

• Main theorem: for any $\epsilon \in (0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a pointquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	# Queries
$O(N)$ \mathbb{F} -ops	$O(N)$ \mathbb{F} -ops	$O(N^{\epsilon})$ \mathbb{F} -ops	$O(N^{\epsilon})$

Interactive oracle proofs

Our approach to the main theorem

Our approach in more detail

• Lemma 1: for any $\epsilon \in (0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a tensorquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	# Queries
O(N) F-ops	$O(N)$ \mathbb{F} -ops	$O(N^{\epsilon})$ \mathbb{F} -ops	0(1)

Lemma 2: code-based compiler

• Main theorem: for any $\epsilon \in (0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a pointquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	# Queries
$O(N)$ \mathbb{F} -ops	$O(N)$ \mathbb{F} -ops	$O(N^{\epsilon})$ \mathbb{F} -ops	$O(N^{\epsilon})$

Our approach in more detail

• Lemma 1: for any $\epsilon \in (0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a tensorquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	# Queries
$O(N)$ \mathbb{F} -ops	$O(N)$ \mathbb{F} -ops	$O(N^{\epsilon})$ \mathbb{F} -ops	0(1)

Lemma 2: code-based compiler

• Main theorem: for any $\epsilon \in (0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a pointquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	# Queries
$O(N)$ \mathbb{F} -ops	$O(N)$ \mathbb{F} -ops	$O(N^{\epsilon})$ \mathbb{F} -ops	$O(N^{\epsilon})$

Lemma 2: the code-based compiler

• Input: tensor-query IOP

Indexer complexity	Prover complexity	Verifier complexity	Proof length	# Queries
T_{I}	T_P	T_V	l	q

• Input: linear code C

Message length	Rate	Encoding time
$k = O(l^{\epsilon})$	ρ	$k \cdot heta(k)$

If *C* is linear-time encodable then the compiler preserves prover and indexer complexity

• Output: point-query IOP

Indexer complexity	Prover complexity	Verifier complexity	Proof length	# Queries
$T_I + O_{\rho}(l) \cdot \theta(k)$	$T_I + O_{\rho}(l) \cdot \theta(k)$	$T_V + O(q \cdot k) \cdot \theta(k)$	$O_{ ho}(q \cdot l)$	$O(q \cdot k)$

Related techniques

Linear-time interactive proofs

Code-based compiler techniques

The input tensor-query IOP

The compiled point-query IOP

The compiled point-query IOP

Which encodings preserve linear time and admit proximity and consistency IOPPs?

Encodings using the tensor code $C^{\otimes t}$

proof data

- No special properties needed from C
- Linear-time-encodable if *C* is lineartime encodable [S96] or [DI14]

How does the consistency test work?

How are these connected?

tensor codeword $enc(\pi)$

tensor query answer $\langle vec(\pi), q_1 \otimes q_2 \otimes q_3 \rangle$

How does the consistency test work?

tensor codeword $enc(\pi)$

How are tensor queries computed?

tensor query answer $\langle vec(\pi), q_1 \otimes q_2 \otimes q_3 \rangle$

A folding operation

$$v = (v_1, v_2, v_3)$$

Computing query answers by folding

Computing query answers by folding

How are tensor encodings computed?

tensor codeword $enc(\pi)$

Partial tensor encodings

tensor IOPproof oraclet = 3

tensor codeword $enc(\pi)$

 π

Partially encoding tensor IOP proofs

 $\langle vec(\pi), q_1 \otimes q_2 \otimes q_3 \rangle$

How do we check consistency?

tensor codeword $enc(\pi)$

tensor query answer $\langle vec(\pi), q_1 \otimes q_2 \otimes q_3 \rangle$

How the IOPP checks consistency

encodings commute

The consistency check IOPP

What the verifier wants to check

Spot-checks using few queries

Analysis: prover complexity

Analysis: proof size and verifier complexity

Only touches 1-dimensional stripes of size $O(N^{1/3})$

Conclusion

Our approach

Our approach

Thanks!

• **Corollary:** for any $\epsilon \in (0,1)$, given any linear-time CRH as a black-box, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a public-coin argument system with

Indexer complexity	Prover complexity	Verifier complexity	Proof size
$O(N)$ \mathbb{F} -ops	$O(N)$ \mathbb{F} -ops	$O(N^{\epsilon})$ \mathbb{F} -ops	$O(N^{\epsilon})$

• Main theorem: for any $\epsilon \in (0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a pointquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	# Queries
$O(N)$ \mathbb{F} -ops	$O(N)$ \mathbb{F} -ops	$O(N^{\epsilon})$ \mathbb{F} -ops	$O(N^{\epsilon})$