
Linear-Time Arguments with 
Sublinear Verification from 

Tensor Codes
Jonathan Bootle (IBM Research – Zurich)

Joint work with Alessandro Chiesa (UC Berkeley) and Jens Groth (Dfinity)



The holy grail for efficient arguments for NP

𝑥1 = 4
𝑥2 = 1

⋮

P V

Prover Verifier

10



The holy grail for efficient arguments for NP

𝑥1 = 4
𝑥2 = 1

⋮

P V𝑂(𝑁)
𝔽-ops

𝑂(𝑁)
𝔽-ops

polylog(𝑁)
bits

Prover Verifier

𝑁-gate
circuit

Any field 𝔽 10



The holy grail for efficient arguments for NP

𝑥1 = 4
𝑥2 = 1

⋮

P V𝑂(𝑁)
𝔽-ops

polylog(𝑁)
𝔽-ops

polylog(𝑁)
bits

Prover Verifier

𝑁-gate
circuit

Indexer

𝑂(𝑁) 𝔽-ops
pre-processingI

Any field 𝔽 10



Obstacles

Fast Fourier transforms Algebraic commitments

(𝑤1, 𝑤2, … , 𝑤𝑀)
𝑂(𝑁) wire values

𝑐 = 𝑔1
𝑤1𝑔2

𝑤2 ⋯𝑔𝑀
𝑤𝑀

commitment

𝑂 𝑁 group exponentiations
=𝑂 𝜆𝑁 𝔽-ops

(𝑔1, 𝑔2… , 𝑔𝑀)
𝑂(𝑁) group elements

(𝑤1, 𝑤2… ,𝑤𝑀)
𝑂(𝑁) wire values

𝑝 𝑋 , 𝑞(𝑋)
degree 𝑂(𝑁) polynomials

(𝑝 𝜔1 , … , 𝑝 𝜔𝑘 )
RS encodings

𝑝 𝑋 ⋅ 𝑞 𝑋 = 𝑟 𝑋
multiplication

𝑂(𝑁 log𝑁)
𝔽 -ops



Exciting progress on provers without FFTs

• Close to the holy grail, but not quite linear-time…

• Excellent concrete efficiency!

Proof System 𝔽-ops Other ops Proof Size

[G16,…] 𝑂 𝑁 log𝑁 𝑂(𝑁) group expo 𝑂(1)

[BCCGP16],
[BBBPWM18]

𝑂(𝑁) 𝑂(𝑁) group expo 𝑂(log𝑁)

[XZPPS19] 𝑂(𝑁) 𝑂(𝑁) group expo 𝑂(𝐷 log𝑁)

[S20] 𝑂(𝑁) 𝑂(𝑁) group expo 𝑂(log2𝑁)

𝑁-gate arithmetic circuits over 𝔽



The holy grail requires:



[AHIKV17] hashes
𝑂(𝑁) hashing 

= 𝑂 𝑁 𝔽-ops

A ray of hope

• [BCGGHJ17] cryptographic argument:

• [BCGGHJ17] interactive oracle proof:

Indexer complexity Prover complexity Verifier complexity Proof size

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁1/2 𝔽-ops 𝑂 𝑁1/2

Indexer complexity Prover complexity Verifier complexity # Queries

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁1/2 𝔽-ops 𝑂 𝑁1/2

Information theoretic



Challenge: can we construct 
linear-time IOPs with better 
query complexity?



Results



Our results

• Corollary: for any 𝜖 ∈ (0,1), given any linear-time CRH as a black-box, CSAT over 
any field 𝔽 of size Ω 𝑁 has a public-coin argument system with

• Main theorem: for any 𝜖 ∈ (0,1), CSAT over any field 𝔽 of size Ω(𝑁) has a point-
query IOP with

Indexer complexity Prover complexity Verifier complexity Proof size

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁𝜖 𝔽-ops 𝑂 𝑁𝜖

Indexer complexity Prover complexity Verifier complexity # Queries

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁𝜖 𝔽-ops 𝑂 𝑁𝜖



Interactive oracle proofs

…

P

proof oracle

query
access

V

Point queries:
𝑞𝑢𝑒𝑟𝑦 𝜋, 𝑖 = 𝜋(𝑖)

(main result)

Tensor queries:
𝑞𝑢𝑒𝑟𝑦 𝜋, 𝑞1, 𝑞2

= ⟨𝜋, 𝑞1 ⊗𝑞2⟩

Linear queries:
𝑞𝑢𝑒𝑟𝑦 𝜋, 𝑞 = ⟨𝜋, 𝑞⟩



Our approach to the main theorem

Main theorem:
point-query 

IOP

Lemma 2:
code-based 

compiler

Lemma 1:
tensor-query 

IOP

linear error-
correcting code



Our approach in more detail

• Lemma 1: for any 𝜖 ∈ (0,1), CSAT over any field 𝔽 of size Ω(𝑁) has a tensor-
query IOP with

• Main theorem: for any 𝜖 ∈ (0,1), CSAT over any field 𝔽 of size Ω(𝑁) has a point-
query IOP with

Indexer complexity Prover complexity Verifier complexity # Queries 

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁𝜖 𝔽-ops 𝑂(1)

Indexer complexity Prover complexity Verifier complexity # Queries

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁𝜖 𝔽-ops 𝑂 𝑁𝜖

Lemma 2:
code-based compiler



Our approach in more detail

• Lemma 1: for any 𝜖 ∈ (0,1), CSAT over any field 𝔽 of size Ω(𝑁) has a tensor-
query IOP with

• Main theorem: for any 𝜖 ∈ (0,1), CSAT over any field 𝔽 of size Ω(𝑁) has a point-
query IOP with

Indexer complexity Prover complexity Verifier complexity # Queries

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁𝜖 𝔽-ops 𝑂(1)

Indexer complexity Prover complexity Verifier complexity # Queries

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁𝜖 𝔽-ops 𝑂 𝑁𝜖

Lemma 2:
code-based compiler



Lemma 2: the code-based compiler
• Input: tensor-query IOP

• Input: linear code 𝐶

• Output: point-query IOP

Indexer complexity Prover complexity Verifier complexity Proof length # Queries

𝑇𝐼 𝑇𝑃 𝑇𝑉 𝑙 𝑞

Message length Rate Encoding time

𝑘 = 𝑂(𝑙𝜖) 𝜌 𝑘 ⋅ 𝜃(𝑘)

Indexer complexity Prover complexity Verifier complexity Proof length # Queries

𝑇𝐼 + 𝑂𝜌 𝑙 ⋅ 𝜃(𝑘) 𝑇𝐼 + 𝑂𝜌 𝑙 ⋅ 𝜃(𝑘) 𝑇𝑉 + 𝑂(𝑞 ⋅ 𝑘) ⋅ 𝜃(𝑘) 𝑂𝜌(𝑞 ⋅ 𝑙) 𝑂(𝑞 ⋅ 𝑘)

If 𝐶 is linear-time encodable 
then the compiler preserves 

prover and indexer complexity



Related techniques

Linear-time
interactive proofs

Holographic
arguments

Code-based
IOPs

[XZPPS19] [S20]

[COS20]

[BCGGHJ17]

This
work

[T13]

[GKR08]

‘FRI’ [BBHR18]

[RR20]



Code-based compiler techniques



The input tensor-query IOP

…P

tensor IOP proof oracle

tensor
queries

V



The compiled point-query IOP

…P

encoded tensor IOP oracle

tensor queries

V

tensor query answers

tensor IOP simulation phase point
queries



The compiled point-query IOP

P V

tensor IOP simulation phase

tensor query consistency phase

1) Proximity test: did the prover really send encoded 
oracles (or close enough)?

2) Consistency test: are query answers consistent 
with the encoded oracles?

IOPP for 1) and 2)
Explicit: query answer 𝑣, implicit: encoding 𝑒

Show 𝑒 = 𝑒𝑛𝑐(𝜋) and 𝑣 = ⟨𝜋 , ⊗𝑖 𝑞𝑖⟩

Which encodings preserve linear time and admit proximity and consistency IOPPs?



Encodings using the tensor code 𝐶⊗𝑡

• No special properties needed from 𝐶

• Linear-time-encodable if 𝐶 is linear-
time encodable [S96] or [DI14]

𝑂(𝑁)
tensor IOP 
proof data

𝑂 𝑁1/3

𝑂 𝑁1/3

𝑂 𝑁1/3

𝑡 = 3

tensor codeword 
𝑒𝑛𝑐 𝜋



How does the consistency test work?

tensor codeword 
𝑒𝑛𝑐 𝜋

How are these 
connected?

tensor IOP 
proof oracle 

𝜋

tensor query answer 
⟨𝑣𝑒𝑐 𝜋 , 𝑞1 ⊗𝑞2 ⊗𝑞3⟩



How does the consistency test work?

tensor IOP 
proof oracle 

𝜋

tensor query answer 
⟨𝑣𝑒𝑐 𝜋 , 𝑞1 ⊗𝑞2 ⊗𝑞3⟩

tensor codeword 
𝑒𝑛𝑐 𝜋How are tensor queries 

computed?



A folding operation

‘fold with 𝑣’

𝑎1

𝑣 = (𝑣1, 𝑣2, 𝑣3)

𝑎2 𝑎3

𝑎1 𝑎2 𝑎3𝑣1 + 𝑣2 + 𝑣3



fold 
with 𝑞2

fold 
with 𝑞3

Computing query answers by folding

fold 
with 𝑞1

tensor query answer 
⟨𝑣𝑒𝑐 𝜋 , 𝑞1 ⊗𝑞2 ⊗𝑞3⟩

tensor IOP 
proof data 𝜋



fold

fold

fold

Computing query answers by folding

tensor IOP 
proof oracle 

𝜋

tensor query answer 
⟨𝑣𝑒𝑐 𝜋 , 𝑞1 ⊗𝑞2 ⊗𝑞3⟩

How are tensor 
encodings computed?

tensor codeword 
𝑒𝑛𝑐 𝜋



encode 
vertically

encode 
horizontally

Partial tensor encodings

𝑡 = 3
tensor IOP 

proof oracle 
𝜋

tensor codeword 
𝑒𝑛𝑐 𝜋



encode encode

Partially encoding tensor IOP proofs

tensor IOP 
proof oracle 

𝜋

tensor query answer 
⟨𝑣𝑒𝑐 𝜋 , 𝑞1 ⊗𝑞2 ⊗𝑞3⟩

tensor codeword 
𝑒𝑛𝑐 𝜋



fold

How do we check consistency?

tensor IOP 
proof oracle 

𝜋

tensor query answer 
⟨𝑣𝑒𝑐 𝜋 , 𝑞1 ⊗𝑞2 ⊗𝑞3⟩

encode

tensor codeword 
𝑒𝑛𝑐 𝜋



How do we check consistency?

tensor IOP 
proof oracle 

𝜋

tensor query answer 
⟨𝑣𝑒𝑐 𝜋 , 𝑞1 ⊗𝑞2 ⊗𝑞3⟩

tensor codeword 
𝑒𝑛𝑐 𝜋

Check consistency at 
each step?



encode

encode
fold

fold

fold

How the IOPP checks consistency

equal

equal

Folding and partial 
encodings commute



The consistency check IOPP

P

P

P

P

tensor IOP 
proof oracle 

𝜋

tensor query answer 
⟨𝑣𝑒𝑐 𝜋 , 𝑞1 ⊗𝑞2 ⊗𝑞3⟩

prover messages

tensor codeword 
𝑒𝑛𝑐 𝜋



V

V
V

encode

encode
fold

fold

fold

What the verifier wants to check

equal?
equal?

equal?

Want to check using a 
small number of queries



Spot-checks using few queries

fold

encode

query

query

V equal?

Distance properties of the code 
guarantee inconsistencies are caught 



fold 𝑂(𝑁)

fold 𝑜(𝑁)

fold 𝑜(𝑁)

encode
𝑜(𝑁)

encode
𝑂(𝑁)

encode
𝑂(𝑁)

Analysis: prover complexity

size 𝑂(𝑁)

size 𝑜(𝑁)
Use [S96] or [DI14] codes



Analysis: proof size and verifier complexity

V

Only touches 1-dimensional 

stripes of size 𝑂 𝑁1/3



Conclusion



Hash-based 
compiler

Code-based 
compiler

Our approach

Tensor IOP Point IOP Argument

Any tensor IOP

Any linear code Any hash function

Sub-linear 
proof size



Hash-based 
compiler

Code-based 
compiler

Our approach

Tensor IOP Point IOP Argument

[S96] or [DI14] codes [AHIKV17] hashes

𝑂 𝑁 -time 
tensor IOP

𝑂 𝑁 -time 
argument



Thanks!

• Corollary: for any 𝜖 ∈ (0,1), given any linear-time CRH as a black-box, CSAT over 
any field 𝔽 of size Ω 𝑁 has a public-coin argument system with

• Main theorem: for any 𝜖 ∈ (0,1), CSAT over any field 𝔽 of size Ω(𝑁) has a point-
query IOP with

Indexer complexity Prover complexity Verifier complexity Proof size

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁𝜖 𝔽-ops 𝑂 𝑁𝜖

Indexer complexity Prover complexity Verifier complexity # Queries

𝑂 𝑁 𝔽-ops 𝑂 𝑁 𝔽-ops 𝑂 𝑁𝜖 𝔽-ops 𝑂 𝑁𝜖


