Linear-Time Arguments with Sublinear Verification from Tensor Codes
 Jonathan Bootle (IBM Research - Zurich)

Joint work with Alessandro Chiesa (UC Berkeley) and Jens Groth (Dfinity)

The holy grail for efficient arguments for NP

The holy grail for efficient arguments for NP

The holy grail for efficient arguments for NP

Obstacles

Fast Fourier transforms

Algebraic commitments

$\left(w_{1}, w_{2} \ldots, w_{M}\right)$ $O(N)$ wire values

degree $O(N)$ polynomials

$\left(p\left(\omega_{1}\right), \ldots, p\left(\omega_{k}\right)\right) \quad p(X) \cdot q(X)=r(X)$
RS encodings
multiplication
$\left(w_{1}, w_{2}, \ldots, w_{M}\right) \quad\left(g_{1}, g_{2} \ldots, g_{M}\right)$
$O(N)$ wire values $\quad O(N)$ group elements
$O(N)$ group exponentiations $=O(\lambda N) \mathbb{F}$-ops

$$
c=\underset{c}{g_{1}^{w_{1}} g_{2}^{w_{2}} \cdots g_{M}^{w_{M}}}
$$

Exciting progress on provers without FFTs

Proof System	F-ops	Other ops	Proof Size
[G16,...]	$O(N \log N)$	$O(N)$ group expo	$O(1)$
[BCCGP16], [BBBPWM18]	$O(N)$	$O(N)$ group expo	$O(\log N)$
[XZPPS19]	$O(N)$	$O(N)$ group expo	$O(D \log N)$
[S20]	$O(N)$	$O(N)$ group expo	$O\left(\log ^{2} N\right)$

N-gate arithmetic circuits over \mathbb{F}

- Close to the holy grail, but not quite linear-time...
- Excellent concrete efficiency!

The holy grail requires:

A ray of hope

- [BCGGHJ17] cryptographic argument:

Indexer complexity	Prover complexity	Verifier complexity	Proof size
$O(N) \mathbb{F}-\mathrm{ops}$	$O(N) \mathbb{F}$-ops	$O\left(N^{1 / 2}\right) \mathbb{F}$-ops	$O\left(N^{1 / 2}\right)$

[AHIKV17] hashes
$O(N)$ hashing

- [BCGGHJ17] interactive oracle proof:

$$
=O(N) \mathbb{F} \text {-ops }
$$

Indexer complexity	Prover complexity	Verifier complexity	\# Queries
$O(N) \mathbb{F}$-ops	$O(N) \mathbb{F}$-ops	$O\left(N^{1 / 2}\right) \mathbb{F}$-ops	$O\left(N^{1 / 2}\right)$

Information theoretic

Challenge: can we construct linear-time IOPs with better query complexity?

Results

Our results

- Corollary: for any $\epsilon \in(0,1)$, given any linear-time CRH as a black-box, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a public-coin argument system with

Indexer complexity	Prover complexity	Verifier complexity	Proof size
$O(N) \mathbb{F}$-ops	$O(N) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right)$

- Main theorem: for any $\epsilon \in(0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a pointquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	\# Queries
$O(N) \mathbb{F}$-ops	$O(N) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right)$

Interactive oracle proofs

Point queries:
query $(\pi, i)=\pi(i)$
\quad (main result)
Tensor queries:
query $\left(\pi, q_{1}, q_{2}\right)$
$\quad=\left\langle\pi, q_{1} \otimes q_{2}\right\rangle$

Linear queries:
query $(\pi, q)=\langle\pi, q\rangle$

Our approach to the main theorem

Our approach in more detail

- Lemma 1: for any $\epsilon \in(0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a tensorquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	\# Queries
$O(N) \mathbb{F}$-ops	$O(N) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right) \mathbb{F}$-ops	$O(1)$

Lemma 2:

code-based compiler

- Main theorem: for any $\epsilon \in(0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a pointquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	\# Queries
$O(N) \mathbb{F}$-ops	$O(N) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right)$

Our approach in more detail

- Lemma 1: for any $\epsilon \in(0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a tensorquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	\# Queries
$O(N) \mathbb{F}$-ops	$O(N) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right) \mathbb{F}$-ops	$O(1)$

Lemma 2:

code-based compiler

- Main theorem: for any $\epsilon \in(0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a pointquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	\# Queries
$O(N) \mathbb{F}$-ops	$O(N) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right)$

Lemma 2: the code-based compiler

- Input: tensor-query IOP

Indexer complexity	Prover complexity	Verifier complexity	Proof length	\# Queries
T_{I}	T_{P}	T_{V}	l	q

- Input: linear code C

Message length	Rate	Encoding time
$k=O\left(l^{\epsilon}\right)$	ρ	$k \cdot \theta(k)$

> If C is linear-time encodable then the compiler preserves prover and indexer complexity

- Output: point-query IOP

Indexer complexity	Prover complexity	Verifier complexity	Proof length	\# Queries
$T_{I}+O_{\rho}(l) \cdot \theta(k)$	$T_{I}+O_{\rho}(l) \cdot \theta(k)$	$T_{V}+O(q \cdot k) \cdot \theta(k)$	$O_{\rho}(q \cdot l)$	$O(q \cdot k)$

Related techniques

Code-based compiler techniques

The input tensor-query IOP

The compiled point-query IOP

The compiled point-query IOP

Which encodings preserve linear time and admit proximity and consistency IOPPs?

Encodings using the tensor code $C^{\otimes t}$

$O\left(N^{1 / 3}\right)$

$O(N)$
tensor IOP

$$
t=3
$$

proof data
tensor codeword $\operatorname{enc}(\pi)$

- No special properties needed from C
- Linear-time-encodable if C is lineartime encodable [S96] or [DI14]

How does the consistency test work?

tensor IOP proof oracle π

tensor codeword enc (π)
tensor query answer $\left\langle\operatorname{vec}(\pi), q_{1} \otimes q_{2} \otimes q_{3}\right\rangle$

How does the consistency test work?

tensor IOP proof oracle π

tensor codeword enc (π) computed?
tensor query answer $\left\langle\operatorname{vec}(\pi), q_{1} \otimes q_{2} \otimes q_{3}\right\rangle$

A folding operation

'fold with v '

$$
v=\left(v_{1}, v_{2}, v_{3}\right)
$$

Computing query answers by folding

tensor query answer $\left\langle\operatorname{vec}(\pi), q_{1} \otimes q_{2} \otimes q_{3}\right\rangle$

Computing query answers by folding

Partial tensor encodings

$$
\begin{aligned}
& \text { tensor IOP } \\
& \text { proof oracle }
\end{aligned} \quad t=3
$$

Partially encoding tensor IOP proofs

tensor codeword $\operatorname{enc}(\pi)$
tensor query answer $\left\langle\operatorname{vec}(\pi), q_{1} \otimes q_{2} \otimes q_{3}\right\rangle$

How do we check consistency?

tensor query answer $\left\langle\operatorname{vec}(\pi), q_{1} \otimes q_{2} \otimes q_{3}\right\rangle$

How do we check consistency?

How the IOPP checks consistency

equal

Folding and partial encodings commute

The consistency check IOPP

What the verifier wants to check

Spot-checks using few queries

Analysis: prover complexity

Analysis: proof size and verifier complexitv

Conclusion

Our approach

Our approach

Thanks!

- Corollary: for any $\epsilon \in(0,1)$, given any linear-time CRH as a black-box, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a public-coin argument system with

Indexer complexity	Prover complexity	Verifier complexity	Proof size
$O(N) \mathbb{F}$-ops	$O(N) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right)$

- Main theorem: for any $\epsilon \in(0,1)$, CSAT over any field \mathbb{F} of size $\Omega(N)$ has a pointquery IOP with

Indexer complexity	Prover complexity	Verifier complexity	\# Queries
$O(N) \mathbb{F}$-ops	$O(N) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right) \mathbb{F}$-ops	$O\left(N^{\epsilon}\right)$

