
Sumcheck Arguments and
their Applications

Jonathan Bootle (IBM Research – Zurich)

Alessandro Chiesa (UC Berkeley)

Katerina Sotiraki (UC Berkeley)

https://ia.cr/2021/333

1

https://ia.cr/2021/333

Succinct arguments

P V⋮

10

Common
input

𝑥1 = 4
𝑥2 = 1

⋮

Witness

Completeness: if the
witness is valid, the

verifier accepts

Soundness: if the
witness is invalid, the

verifier rejects

Knowledge soundness:
(later)

Succinctness: the messages are much
smaller than the witness

2

The sumcheck protocol [LFKN92]

P V

Given a polynomial 𝑝(𝑋1, … , 𝑋ℓ) over a field 𝔽 and a value 𝑢 ∈ 𝔽,
prove that σ𝜔∈𝐻ℓ 𝑝(𝜔1, … , 𝜔ℓ) = 𝑢

𝑞1 ∈ 𝔽[𝑋1] Checks that
σ𝜔1∈𝐻

𝑞1 𝜔1 = 𝑢

σ𝜔2∈𝐻
𝑞2 𝜔2 = 𝑞1(𝑟1)

⋮
σ𝜔ℓ∈𝐻

𝑞ℓ 𝜔ℓ = 𝑞ℓ−1(𝑟ℓ−1)

⋮
Computes polynomials
𝑞𝑖 𝑋𝑖 =
σ
𝜔∈𝐻ℓ−𝑖 𝑝(𝑟1, . . , 𝑟𝑖−1, 𝑋𝑖 , 𝜔𝑖+1, . . , 𝜔ℓ)

Soundness: If σ𝜔∈𝐻ℓ 𝑝(𝜔1, … , 𝜔ℓ) ≠ 𝑢 then V accepts with probability at most
ℓ⋅deg(𝑝)

|𝔽|
.

Communication
ℓ ⋅ deg 𝑝 elements of 𝔽

𝑟1 ← 𝔽

𝑞ℓ ∈ 𝔽[𝑋ℓ]

𝑟ℓ ← 𝔽

Evaluates 𝑝 to check that
𝑝(𝑟1, … , 𝑟ℓ) = 𝑞ℓ(𝑟ℓ)

3

The sumcheck protocol is everywhere!

Sumcheck
protocolProbabilistic proofs

[BFL91,BFLS91,GKR08]

Sumcheck-based
succinct arguments

[Thaler13]

[CMT13], [VSBW13],
[W+17], [ZGKPP17],

[WTSTW18],
[XZZPS19], [Set20]

Univariate-sumcheck-
based arguments

[BCRSVS19]

[BCGGRS19], [ZXZS20],
[CHMVW20], [COS20],
[CFQR20], [BFHVXZ20]

Sumchecks for
tensor codes

[Meir13]

[RR20],
[BCG20],
[BCL20]

• Linear-time prover
[Thaler13,ZXZS20]

• Small space [CMT13]
(can be implemented with
streaming access)

• Strong soundness
properties [CCHLRR18]
(can make non-interactive
without random oracles)

Useful properties:

4

The sumcheck protocol is everywhere!

Sumcheck
protocolProbabilistic proofs

[BFL91,BFLS91,GKR08]

Sumcheck-based
succinct arguments

[Thaler13]

[CMT13], [VSBW13],
[W+17], [ZGKPP17],

[WTSTW18],
[XZZPS19], [Set20]

Univariate-sumcheck-
based arguments

[BCRSVS19]

[BCGGRS19], [ZXZS20],
[CHMVW20], [COS20],
[CFQR20], [BFHVXZ20]

Sumchecks for
tensor codes

[Meir13]

[RR20],
[BCG20],
[BCL20]

• Linear-time prover
[Thaler13,ZXZS20]

• Small space [CMT13]
(can be implemented with
streaming access)

• Strong soundness
properties [CCHLRR18]
(can make non-interactive
without random oracles)

Useful properties:

https://zkproof.org/2020/03/16/sum-checkprotocol/

5

https://zkproof.org/2020/03/16/sum-checkprotocol/

Pairing-group
arguments

[LMR19], [ZGKPP17],
[XZZPS19]

Split-and-fold techniques:
a separate body of work?

Discrete-log arguments
[BBBPWM18], [PLS19],

[HKR19], [BHRRS20]

Unknown-order-group
arguments

[BFS20],
[BHRRS21]

Lattice
arguments

[BLNS20],
[ACK21], [LA20]

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Split-and-fold
[BCCGP16] • Linear-time prover

• Streaming prover
[BHRRS20], [BHRRS21]
(can be implemented in
small space)

Useful properties:

6

Pairing-group
arguments

[LMR19], [ZGKPP17],
[XZZPS19]

Split-and-fold techniques:
a separate body of work?

Discrete-log arguments
[BBBPWM18], [PLS19],

[HKR19], [BHRRS20]

Unknown-order-group
arguments

[BFS20],
[BHRRS21]

Lattice
arguments

[BLNS20],
[ACK21], [LA20]

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Split-and-fold
[BCCGP16] • Linear-time prover

• Streaming prover
[BHRRS20], [BHRRS21]
(can be implemented in
small space)

Useful properties:

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

[BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by
Blockstream, and in Monero, Mimblewimble and more…

7

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Results

8

From two bodies of work……to a unified perspective

Sumchecks and
commitment schemes

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

Sumcheck arguments
(this work)

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

Folding techniques

Sumcheck
protocol

9

General goal:
succinct arguments for commitment openings

P V

Common input:
• commitment 𝐶
• commitment key 𝑐𝑘

Succinctness goal:
communication ≪ |𝑚|

⋮

Focus: commitments
with special structure

Claim: ∃ 𝑚 such that
𝐶 = Com 𝑐𝑘,𝑚

10

A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if

Com 𝑐𝑘,𝑚 = ෍

𝜔1,…,𝜔ℓ∈𝐻

𝑓(𝑝𝑚 𝜔1, … , 𝜔ℓ , 𝑝𝑐𝑘 𝜔1, … , 𝜔ℓ)

Example: Pedersen commitments 𝐶 = 𝑎1 ⋅ 𝑔1 +⋯+ 𝑎𝑛 ⋅ 𝑔𝑛

𝐻 = −1,1
𝑅 = 𝔽𝑝

message
polynomial

in 𝕄[𝑋1, … , 𝑋ℓ],
𝕄 an 𝑅-module

evaluation
points from

𝐻 ⊆ 𝑅, 𝑅 a ring

key polynomial
in 𝕂[𝑋1, … , 𝑋ℓ],
𝕂 an 𝑅-module

combiner function 𝑓 ∶ 𝕄 × 𝕂 → ℂ

𝕂 = 𝔾, 𝑝𝑐𝑘 𝑋1, … , 𝑋ℓ = σ𝑔𝑖1,…,𝑖ℓ𝑋1
𝑖1 …𝑋ℓ

𝑖ℓ

ℂ = 𝔾
𝑓: 𝑎, 𝑔 → 𝑎 ⋅ 𝑔

commitment
space ℂ is an
𝑅-module

𝕄 = 𝔽𝑝, 𝑝𝑚 𝑋1, … , 𝑋ℓ = σ𝑎𝑖1,…,𝑖ℓ𝑋1
𝑖1 …𝑋ℓ

𝑖ℓ

11

Main result: sumcheck arguments

Theorem 1:

Let CM be a commitment scheme which is sumcheck-friendly and
invertible. Given a commitment key 𝑐𝑘 and a commitment 𝐶, the
sumcheck protocol applied to

(with one extra verifier check) is a succinct argument of knowledge for
the claim ∃𝑚 such that 𝐶 = Com(𝑐𝑘,𝑚), with

Sumcheck
works over
rings and
modules

Think 𝑂(log |𝑚|)

𝑝 𝑋1, … , 𝑋ℓ = 𝑓 𝑝𝑚 𝑋1, … , 𝑋ℓ , 𝑝𝑐𝑘 𝑋1, … , 𝑋ℓ ∈ ℂ[𝑋1, … , 𝑋ℓ]

• completeness • soundness • communication ℓ ⋅ deg 𝑝

12

Application: succinct arguments for NP

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

scalar-product
arguments

for bilinear modules

Step 1: reduce NP
statements to

scalar products

Step 2: use efficient
subroutine for
scalar-products

Sumcheck
protocol

Sumchecks and
commitment schemes

Folding techniques

Sumcheck arguments
(this work)

13

Application to R1CS over rings

R1CS problem over a ring 𝑹: given matrices 𝐴, 𝐵, 𝐶 ∈ 𝑅𝑛×𝑛, does there
exist 𝑧 ∈ 𝑅𝑛 satisfying 𝐴𝑧 ∘ 𝐵𝑧 = 𝐶𝑧?

Theorem 2: Let (𝑀𝐿 , 𝑀𝑅 , 𝑀𝑇 , 𝑒) be a “secure” bilinear module where 𝑀𝐿 is a
ring. Let 𝐼 ⊆ 𝑀𝐿 be a suitable ideal. There is a ZK succinct argument of
knowledge for R1CS with

R1CS Ring Prover time Verifier time Proof size

𝑀𝐿/𝐼 𝑂 𝑛 ops
in 𝑀𝐿, 𝑀𝑅 , 𝑀𝑇

𝑂 𝑛 ops
in 𝑀𝐿, 𝑀𝑅 , 𝑀𝑇

𝑂 log 𝑛 elems of 𝑀𝑇

Has enough structure for Pedersen and Schnorr

Bilinear module: a triple of modules (𝑀𝐿 , 𝑀𝑅 , 𝑀𝑇) over the same ring
with a bilinear map 𝑒 ∶ 𝑀𝐿 ×𝑀𝑅 → 𝑀𝑇.

14

Lattice-based succinct arguments for R1CS

Corollary: Let 𝑑 be a power of 2, 𝑝 ≪ 𝑞 primes, 𝑅𝑝 ≔ ℤ𝑝[𝑋]/ 𝑋
𝑑 + 1

and similarly for 𝑅𝑞. Then assuming SIS is hard over 𝑅𝑞, there is a zero-
knowledge succinct argument of knowledge for R1CS with

R1CS Ring Prover time Verifier time Proof size

𝑅𝑝 𝑂 𝑛 ops in 𝑅𝑝, 𝑅𝑞 𝑂 𝑛 ops in 𝑅𝑝, 𝑅𝑞 𝑂 log 𝑛 elems of 𝑅𝑞

Concurrent work:
• [LA21] gives impossibility results and improvements for lattice POKs
• [ACK21] gives lattice-based succinct arguments for NP

15

Open questions

• Analyse the post-quantum
security of sumcheck arguments

• Investigate new lattice
instantiations [LA21] and concrete
performance improvements

• Give instantiations of
[BFS20,Lee21,BHHRS21] in our
framework (or a generalization)

16

Techniques

17

Sumcheck arguments for commitment schemes

Rings and
modules

Groups

Pedersen
commitments

Scalar-product
commitments

Sumcheck-friendly
commitments

Generalised
sumcheck-friendly

commitments

Today:
Many more details
and results in the

paper!

18

19

sumcheck protocol for

෍

𝜔 ∈ −1,1 log(𝑛)

𝑝𝑎 ഫ𝜔 𝑝ഫ𝐺 ഫ𝜔 = 𝑛 𝐶

Sumcheck argument for Pedersen
Common input:
• commitment 𝐶 ∈ 𝔾
• key ഫ𝐺 ∈ 𝔾𝑛

Claim: ∃പ𝑎 ∈ 𝔽𝑛 s.t. 𝐶 = പ𝑎, ഫ𝐺

V
𝑝ഫ𝑎 പ𝑟

𝑟 ← 𝔽log(𝑛)

𝑞1, … , 𝑞log 𝑛𝑟

“split-and-fold technique”
[BCCGT16] is equivalent!
(See App. A in the paper)

P

Opening:
പ𝑎 ∈ 𝔽𝑛 പ𝑎

Communication: 3 log 𝑛 𝔾 + (log 𝑛 + 1) 𝔽
Verifier computation: O 𝑛 𝔾

𝑞1 1 + 𝑞1 −1 = 𝑛𝐶?

𝑞log(𝑛) 1 + 𝑞log(𝑛) −1 =

𝑞log(𝑛)−1(𝑟log 𝑛 −1)?

⋮

Consistency check:
𝑝𝑎 𝑟 𝑝𝐺 𝑟 = 𝑞log 𝑛 (𝑟log 𝑛)?

Claim: σഫ𝜔∈ −1,1 log(𝑛) 𝑝ഫ𝑎 ഫ𝜔 𝑝ഫ𝐺 ഫ𝜔 = 𝑛 പ𝑎, ഫ𝐺 (recall 𝑝𝑟 ഫ𝑋 = σ𝑖=1
𝑛 𝑟 Ӊ𝑖𝑋1

𝑖1 ⋯𝑋
log(𝑛)

𝑖log(𝑛)
)

Completeness (part 1)

Lemma: If പ𝑎, ഫ𝐺 = 𝐶, then the verifier accepts with probability 1.

It suffices to show the following claim.

Sumcheck argument: Pedersen

෍

ഫ𝜔∈ −1,1 log(𝑛)

𝑝ഫ𝑎 ഫ𝜔 𝑝ഫ𝐺 ഫ𝜔 𝑛 പ𝑎, ഫ𝐺

hypothesis
what the sumcheck
protocol checks

𝑛𝐶

20

Completeness (part 2)

σ
𝜔 ∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝𝐺 𝜔 cancels monomials of odd degree in any variable, e.g., 𝑋1𝑋2

2𝑋3
2

𝑝𝑎 𝑋 𝑝𝐺 𝑋

Hence, σ𝜔 ∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝𝐺 𝜔 receives contributions from monomials 𝑋1
2𝑖1 ⋯𝑋

log(𝑛)

2𝑖log(𝑛)

Monomials of the form 𝑋1
2𝑖1 ⋯𝑋

log(𝑛)

2𝑖log(𝑛)
arise from 𝑎 Ӊ𝑖𝑋1

𝑖1 ⋯𝑋
log 𝑛

𝑖log 𝑛
∙ 𝐺 Ӊ𝑖𝑋1

𝑖1 ⋯𝑋
log 𝑛

𝑖log 𝑛

Sumcheck argument: Pedersen

Claim: σ𝜔∈ −1,1 log(𝑛) 𝑝𝑎 𝜔 𝑝𝐺 𝜔 = 𝑛 𝑎, 𝐺 (recall 𝑝𝑟 𝑋 = σ𝑖=1
𝑛 𝑟 Ӊ𝑖𝑋1

𝑖1 ⋯𝑋
log(𝑛)

𝑖log(𝑛)
)

21

𝑖1, … , 𝑖log 𝑛 ∈ {0,1}

What kind of soundness? Knowledge soundness

Sumcheck argument: Pedersen

There exists an extractor that given a suitable tree of accepting transcripts for a
commitment key 𝑐𝑘 and commitment 𝐶, finds an opening 𝑚 such that 𝐶 = Com(𝑐𝑘,𝑚).

Soundness (part 1)

⋮ ⋮ ⋮

𝑟1
(1)

𝑟1
(2) 𝑟1

(3)

𝑞1

𝑞2 𝑟1
(1)

𝑞2 𝑟1
(2) 𝑞2 𝑟1

(3)

P V

𝑞1

⋮

𝑟1

𝑞ℓ

𝑟ℓ

E

message
𝑚

22

Lemma: There exists an extractor that, given a 3-ary tree of accepting transcripts for

key ഫ𝐺 and commitment 𝐶, finds an opening 𝑎 such that 𝐶 = 𝑎, 𝐺 .

⋮ ⋮ ⋮

𝑟1
(1)

𝑟1
(2) 𝑟1

(3)

𝑞1

𝑞2 𝑟1
(1)

𝑞2 𝑟1
(2) 𝑞2 𝑟1

(3)

𝟑𝐥𝐨𝐠 𝒏 −𝟏 openings of size 2 for 𝑞ℓ−1 𝑟ℓ −1 with key ഫ𝐺ℓ−1 ∈ 𝔾2

𝟑𝐥𝐨𝐠 𝒏 openings of size 1 for 𝑞ℓ 𝑟ℓ with key 𝑝𝐺 പ𝑟 ∈ 𝔾

𝟑𝒊−𝟏 openings of size 𝟐𝐥𝐨𝐠 𝒏 −𝒊+𝟏 for 𝑞𝑖−1 𝑟𝑖−1 with key ഫ𝐺𝑖−1 ∈ 𝔾2log 𝑛 −𝑖+1

where ഫ𝐺𝑖−1 is the vector of coefficients of 𝑝𝐺 𝑟1, … , 𝑟𝑖−1, ഫ𝑋 .

1 opening of size 𝟐𝐥𝐨𝐠 𝒏 = 𝒏 for 𝑛𝐶 with key ഫ𝐺 ∈ 𝔾𝑛

Round 1

Round 𝒊

Round 𝐥𝐨𝐠(𝐧)

Sumcheck argument: Pedersen

Soundness (part 2)

23

Soundness (part 3)

In the protocol, 𝑞𝑖 𝑋 = σ
ഫ𝜔∈{−1,1 }ℓ−𝑖 𝑝ഫ𝑎 𝑟1, … , 𝑟𝑖−1, 𝑋, ഫ𝜔 𝑝𝐺 𝑟1, … , 𝑟𝑖−1, 𝑋, ഫ𝜔 .

So, 𝑞𝑖 𝑋 is quadratic.

Claim: If ഫ𝜋(𝑗) ∈ 𝔽2
ℓ−𝑖

is opening for 𝑞𝑖(𝑟𝑖
(𝑗)
) for 𝑗 ∈ [3], we can find an opening

of size 2ℓ−𝑖+1 for 𝑞𝑖−1(𝑟𝑖−1).

Sumcheck argument: Pedersen

3-ary tree contains three evaluations of 𝑞𝑖 𝑋 such that

∀𝑗 ∈ 3 , 𝑞𝑖 𝑟𝑖
(𝑗)

= ഫ𝜋(𝑗), ഫ𝐺𝑖

Then we can find 𝑞𝑖−1 𝑟𝑖−1 = 𝑞𝑖 1 + 𝑞𝑖 −1 = ഫ𝜋′, ഫ𝐺𝑖−1

Verifier’s check

24

Goal: find ഫ𝜋 such that 𝑞𝑖 𝑋 = ഫ𝜋(Χ), ഫ𝐺𝑖−1

Soundness (part 4)

ഫ𝐺𝑘 is the vector of coefficients of 𝑝𝐺 𝑟1, … , 𝑟𝑘 , ഫ𝑋

= ഫ𝜋(𝑗), (ഫ𝐺𝑖−1,𝐿+ 𝑟𝑖
(𝑗)
ഫ𝐺𝑖−1,𝑅)

= ഫ𝜋 𝑗 , 𝑟𝑖
(𝑗)
ഫ𝜋 𝑗 , ഫ𝐺𝑖−1

Sumcheck argument: Pedersen

Claim: If ഫ𝜋(𝑗) ∈ 𝔽2
ℓ−𝑖

is opening for 𝑞𝑖(𝑟𝑖
(𝑗)
) for 𝑗 ∈ [3], we can find an opening

of size 2ℓ−𝑖+1 for 𝑞𝑖−1(𝑟𝑖−1).

3-ary tree contains three evaluations of 𝑞𝑖 𝑋 such that

∀𝑗 ∈ 3 , 𝑞𝑖 𝑟𝑖
(𝑗)

= ഫ𝜋(𝑗), ഫ𝐺𝑖

ഫ𝜋 such that
𝑞𝑖 𝑋 = ഫ𝜋(Χ), ഫ𝐺𝑖−1

linear algebra

25
Pedersen commitment is invertible.

Sumcheck arguments for commitment schemes

Rings and
modules

Groups

Pedersen
commitments

Scalar-product
commitments

Sumcheck-friendly
commitments

Generalised
sumcheck-friendly

commitments

Today:

26

27

sumcheck protocol for

෍

𝜔 ∈ −1,1 log(𝑛)

𝑝𝑎 𝜔 𝑝ഫ𝐺1 𝜔

𝑝𝑏 𝜔 𝑝ഫ𝐺2 𝜔

𝑝𝑎 𝜔 𝑝𝑏 𝜔 𝑈

= 𝑛 𝐶

Common input:
• key ഫ𝐺1, ഫ𝐺2, 𝑈 ∈ 𝔾2𝑛+1

• commitment 𝐶 ∈ 𝔾3

Claim: ∃ പ𝑎, പ𝑏 ∈ 𝔽2𝑛 s.t. 𝐶 = പ𝑎, ഫ𝐺1 , പ𝑏, ഫ𝐺2 , പ𝑎, പ𝑏 𝑈

𝑝𝑎 പ𝑟 , 𝑝𝑏(പ𝑟)

Sumcheck argument for
scalar-product commitments

P

Opening:
പ𝑎, പ𝑏 ∈ 𝔽2𝑛

V
𝑟

Consistency check:
𝑝𝑎 𝑟 𝑝ഫ𝐺1 𝑟

𝑝𝑏 𝑟 𝑝ഫ𝐺2 𝑟

𝑝𝑎 𝑟 𝑝𝑏 𝑟 𝑈

= 𝑞ℓ(𝑟ℓ)?

𝑟 ← 𝔽log(𝑛)പ𝑎, പ𝑏

Communication: succinct
Verifier computation: linear

𝑞1, … , 𝑞log 𝑛

𝑞1 1 + 𝑞1 −1 = 𝑛𝐶?

𝑞log(𝑛) 1 + 𝑞log(𝑛) −1 =

𝑞log(𝑛)−1(𝑟log 𝑛 −1)?

⋮

Completeness and soundness
Lemma: The verifier accepts with probability 1.

𝐶 =

പ𝑎, ഫ𝐺1
പ𝑏, ഫ𝐺2
പ𝑎, പ𝑏 𝑈

𝑝ഫ𝑎 ഫ𝑋 𝑝ഫ𝐺1 ഫ𝑋

𝑝ഫ𝑏 ഫ𝑋 𝑝ഫ𝐺2 ഫ𝑋

𝑝𝑎 ഫ𝑋 𝑝𝑏 ഫ𝑋 𝑈

Follows from completeness for Pedersen

Lemma: If the commitment scheme is binding, there exists an extractor that, given a 4-ary
tree of accepting transcripts for key (ഫ𝐺1, ഫ𝐺2) and commitment 𝐶, finds an opening പ𝑎, പ𝑏

such that 𝐶 = 𝑎, 𝐺1 , 𝑏, 𝐺2 , 𝑎, 𝑏 𝑈 .

Similarly to Pedersen, we extract opening for each components. Using a computational
assumption and the larger tree, we show that third component is the scalar-product പ𝑎, പ𝑏 .

Scalar-product commitment is invertible.

Sumcheck argument:
Scalar-product commitment

28

Sumcheck arguments for commitment schemes

Rings and
modules

Groups

Pedersen
commitments

Scalar-product
commitments

Sumcheck-friendly
commitments

Generalised
sumcheck-friendly

commitments

Today:

29

Sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com 𝑐𝑘,𝑚 = ෍

𝜔1,…,𝜔ℓ∈𝐻

𝑓(𝑝𝑚 𝜔1, … , 𝜔ℓ , 𝑝𝑐𝑘 𝜔1, … , 𝜔ℓ)

message
polynomial

in 𝕄[𝑋1, … , 𝑋ℓ],
𝕄 an 𝑅-module

evaluation
points from

𝐻 ⊆ 𝑅, 𝑅 a ring

key polynomial
in 𝕂[𝑋1, … , 𝑋ℓ],
𝕂 an 𝑅-module

combiner function 𝑓 ∶ 𝕄 × 𝕂 → ℂ

commitment
space ℂ is an
𝑅-module

Sumcheck arguments for sumcheck-friendly commitments?

30

31

𝑝𝑚(പ𝑟)

Sumcheck argument for
sumcheck-friendly commitments

𝑟 ← 𝔽ℓ

𝑟

Common input:
• key 𝑐𝑘
• commitment 𝐶

Claim: ∃𝑚 s.t. 𝐶 = σ
ഫ𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 ഫω , 𝑝𝑐𝑘 ഫ𝜔

P

Opening: 𝑚

V

Consistency check:
𝑓 𝑝𝑚 𝑟 , 𝑝𝑐𝑘 𝑟 = 𝑞ℓ(𝑟ℓ)?

𝑚

Communication: sumcheck + |𝑝𝑚 പ𝑟 |

Verifier computation: computation of 𝑝𝑐𝑘 𝑟 and 𝑓

𝑞1, … , 𝑞ℓ

σ𝜔∈𝐻 𝑞1 𝜔 = 𝐶?

σ𝜔∈𝐻 𝑞ℓ 𝜔 = 𝑞ℓ−1(𝑟ℓ−1)?

⋮

sumcheck protocol for

σ
𝜔 ∈𝐻ℓ 𝑓 𝑝𝑚 𝜔 , 𝑝𝑐𝑘 𝜔 = 𝐶

Extractor works inductively as in Pedersen using invertibility in each layer

Completeness and soundness

Lemma: The verifier accepts with probability 1.

Follows directly from definition of sumcheck-friendly commitments

Lemma: If commitment scheme is invertible, there exists an extractor that, given a
suitable tree of accepting transcripts for key 𝑐𝑘 and commitment 𝐶, finds an opening 𝑚.

Sumcheck argument:
Sumcheck-friendly commitment

32

𝑟𝑖
(𝑲)

𝑟𝑖
(2)

Given polynomial 𝑞𝑖(𝑋) and “openings’’ 𝑝 1 ഫX ,… , 𝑝(𝑲) ഫX such that

∀𝑗 ∈ 𝐾 ∶ 𝑞𝑖 𝑟
(𝑗) = σ

ഫ𝜔∈𝐻ℓ−𝑖 𝑓 𝑝(𝑗) ഫ𝜔 , 𝑝𝑐𝑘(𝑟1, … , 𝑟𝑖
(𝑗)
, ഫ𝜔)

We can find polynomial 𝑝 such that σ𝜔∈𝐻 𝑞𝑖 (𝜔) = σ
ഫ𝜔∈𝐻ℓ−𝑖+1 𝑓 𝑝 ഫ𝜔 , 𝑝𝑐𝑘(𝑟1, … , 𝑟𝑖−1, ഫ𝜔)

Invertibility

𝑟𝑖
(1)

𝑞𝑖

…

Property that allows to climb up the tree from layer to layer.

𝑝(1) 𝑝(2) 𝑝(𝐊)

K-

Invertible commitment schemes:
Pedersen commitments, scalar-product commitments, linear-function commitments

Extra variable 𝑋𝑖: 𝑝 “bigger” than 𝑝(𝑗)

Sumcheck argument:
Sumcheck-friendly commitment

33

Sumcheck arguments for commitment schemes

Rings and
modules

Groups

Pedersen
commitments

Scalar-product
commitments

Sumcheck-friendly
commitments

Generalised
sumcheck-friendly

commitments

Today:

34

From groups to rings

Goal: an abstraction for mathematical structures where folding techniques can work

Everything so far extends to general 𝔽-vector spaces, e.g., bilinear groups [BMMTV19].

Scalar-product commitments for bilinear groups: ഫ𝒂, ഫ𝑮𝟏 , ഫ𝒃, ഫ𝑮𝟐 , ഫ𝒂, ഫ𝒃 ∈ 𝔾𝑻
𝟑

𝔾1 𝔾2
Lattices and groups of unknown order?

35

Messages Keys Commitments Assumption

small 𝑀𝐿 𝑀𝑅 𝑀𝑇 Bilinear Relation Assumption

From groups to rings:
bilinear modules

Norm checks: only “short” elements are valid messages
e.g., for ring-SIS

𝑹-module 𝑴: generalization of vector space over rings

Bilinear module: 𝑀𝐿, 𝑀𝑅 , 𝑀𝑇 , 𝑒 such that • 𝑀𝐿, 𝑀𝑅 , 𝑀𝑇 are 𝑅-modules
• 𝑒 ∶ 𝑀𝐿 ×𝑀𝑅 → 𝑀𝑇 is 𝑅-bilinear

Pedersen example: 𝐶 = 𝑎1𝐺1 +⋯+ 𝑎𝑛𝐺𝑛 = ⟨𝑎 , 𝐺⟩

‘Multiply’ message and key elements using 𝑒

Add the pieces together

Hard to find small 𝑎

such that 𝑎 , 𝐺 = 0

Can define polynomials over
message and key spaces

36

37

𝑝𝑚(പ𝑟)

𝑟 ← 𝒞ℓ

𝑟

common input:
• key 𝑐𝑘
• commitment 𝐶
claim: ∃𝑚 with 𝒎 ≤ 𝑩 s.t. 𝐶 = σ

ഫ𝜔 ∈ 𝐻ℓ 𝑓 𝑝𝑚 ഫ𝜔 , 𝑝𝑐𝑘 ഫ𝜔

P

Opening: 𝑚
with 𝒎 ≤ 𝑩

V
consistency check:

𝑓 𝑝𝑚 𝑟 , 𝑝𝑐𝑘 𝑟 = 𝑣?

𝒑𝒎(പ𝒓) ≤ 𝑩∗?

𝑚

From groups to rings:
sumcheck arguments

Natural bound for

evaluation of 𝒑𝒎 on 𝒞ℓ

𝑞1, … , 𝑞ℓ

⋮

Special challenge set ⊆ 𝑹!
(necessary even for
sumcheck protocol)

σ𝜔∈𝐻 𝑞1 𝜔 = 𝐶?

σ𝜔∈𝐻 𝑞ℓ 𝜔 = 𝑞ℓ−1(𝑟ℓ−1)?sumcheck protocol for

σ
𝜔 ∈𝐻ℓ 𝑓 𝑝𝑚 𝜔 , 𝑝𝑐𝑘 𝜔 = 𝐶

Arithmetic over rings might cause slackness factors and increase in norm.
e.g., for Pedersen, the extracted relaxed opening 𝑎 for 𝐶 and 𝐺:

𝝃ℓ ⋅ 𝐶 = 𝑎, 𝐺 with പ𝑎 ≤ 𝑁ℓ ⋅ 𝐵∗

From groups to rings:
soundness

Lemma: If commitment scheme is invertible, there exists an extractor that, given a suitable
tree of accepting transcripts for key 𝑐𝑘 and commitment 𝐶, finds a relaxed opening 𝑚.

Challenges:
1. Linear algebra different over rings and modules
2. Norm considerations arise

Ring 𝒞 𝜉 𝛮

ℤ𝑞 𝑋

< 𝑋𝑑 + 1 >
{𝑋𝑖: 0 ≤ 𝑖 ≤ 2𝑑 − 1 } 8 𝑂(𝑑7)

Parameters for lattices:

Tighter analysis in
[LA21], [ACK21]

Tighter analysis in
[LA21], [ACK21]

38

e.g., for Pedersen, the extracted relaxed opening 𝑎 for 𝐶 and 𝐺:

𝝃ℓ ⋅ 𝐶 = 𝑎, 𝐺 with പ𝑎 ≤ 𝑁ℓ ⋅ 𝐵

From groups to rings:
R1CS over rings

Lemma (soundness): There exists an extractor that finds an R1CS witness.

Without slackness!

𝐶 = 𝑎/𝝃ℓ, 𝐺 with പ𝑎/𝝃ℓ ≤ 𝐵′

Issues:
1. 𝜉 might not be invertible

2. പ𝑎/𝜉ℓ might not be small

Ideal 𝐼 such that 𝜉 (mod 𝐼) is invertible, 𝑥 (mod 𝐼) small for all 𝑥

𝐶 = 𝑎/𝜉ℓ(𝐦𝐨𝐝 𝑰), 𝐺 with പ𝑎/𝜉ℓ(𝐦𝐨𝐝 𝑰) ≤ 𝐵′

A remark about our R1CS result:

39

Instantiations of bilinear modules

Assumption Messages Keys Commitments Ideal

BRA small 𝑀𝐿 𝑀𝑅 𝑀𝑇 𝐼

DLOG 𝔽𝑝 𝔾 𝔾 {0}

DPAIR[AFGHO10] 𝔾1 𝔾2 𝔾𝑇 {0}

UO [BFS20] small ℤ 𝔾 𝔾 𝑛ℤ for suitable small 𝑛

RSIS [Ajtai94] small 𝑅𝑞 𝑅𝑞
𝑑 𝑅𝑞

𝑑 𝑛ℤ for suitable small 𝑛

40

Conclusion

41

Summary of results
Theorem 1:

The sumcheck protocol applied to a sumcheck-friendly commitment scheme
is a succinct argument of knowledge of commitment openings.

Theorem 2: Let (𝑀𝐿 , 𝑀𝑅 , 𝑀𝑇) be a
secure bilinear module with 𝑀𝐿 a
ring and 𝐼 ⊆ 𝑀𝐿 an ideal. There is a
ZK succinct argument of knowledge
for R1CS with

Corollary: Let 𝑝 ≪ 𝑞 primes,

𝑅𝑝 ≔ ℤ𝑝[𝑋]/ 𝑋
𝑑 + 1 and similarly

for 𝑅𝑞. Then assuming SIS is hard,

there is a ZK succinct argument of
knowledge for R1CS with

R1CS
Ring

Prover and verifier
time

Proof size

𝑀𝐿/𝐼 𝑂 𝑛 ops 𝑀𝐿, 𝑀𝑅 , 𝑀𝑇 𝑂 log𝑛 elems

R1CS
Ring

Prover and verifier
time

Proof size

𝑅𝑝 𝑂 𝑛 ops 𝑅𝑝, 𝑅𝑞 𝑂 log𝑛 elems 𝑅𝑞
42

Takeaways

• Many commitment schemes are
sumcheck friendly

• We can recast many different
cryptographic settings as bilinear modules

• In the paper: instantiations and
polynomial commitment schemes

43

Thanks!

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

Sumcheck
protocol

https://ia.cr/2021/333

Sumchecks and
commitment schemes

Folding techniques

Sumcheck arguments
(this work)

44

https://ia.cr/2021/333

