Sumcheck Arguments and their Applications

Jonathan Bootle (IBM Research – Zurich)

Alessandro Chiesa (UC Berkeley)

Katerina Sotiraki (UC Berkeley)

https://ia.cr/2021/333

Succinct arguments

smaller than the witness

The sumcheck protocol [LFKN92]

Ρ

Given a polynomial $p(X_1, ..., X_\ell)$ over a field \mathbb{F} and a value $u \in \mathbb{F}$, prove that $\sum_{\omega \in H^\ell} p(\omega_1, ..., \omega_\ell) = u$

Computes polynomials $q_i(X_i) = \sum_{\underline{\omega} \in H^{\ell-i}} p(r_1, \dots, r_{i-1}, X_i, \omega_{i+1}, \dots, \omega_{\ell})$

$$q_{1} \in \mathbb{F}[X_{1}]$$

$$r_{1} \leftarrow \mathbb{F}$$

$$\vdots$$

$$q_{\ell} \in \mathbb{F}[X_{\ell}]$$

$$r_{\ell} \leftarrow \mathbb{F}$$

Communication $\ell \cdot \deg(p)$ elements of \mathbb{F}

Checks that $\sum_{\omega_1 \in H} q_1(\omega_1) = u$ $\sum_{\omega_2 \in H} q_2(\omega_2) = q_1(r_1)$ \vdots $\sum_{\omega_\ell \in H} q_\ell(\omega_\ell) = q_{\ell-1}(r_{\ell-1})$

Evaluates p to check that $p(r_1, \dots, r_\ell) = q_\ell(r_\ell)$

Soundness: If $\sum_{\underline{\omega} \in H^{\ell}} p(\omega_1, ..., \omega_{\ell}) \neq u$ then V accepts with probability at most $\frac{\ell \cdot \deg(p)}{|\mathbb{F}|}$.

The sumcheck protocol is everywhere!

Sumcheck-based succinct arguments [Thaler13]

[CMT13], [VSBW13], [W+17], [ZGKPP17], [WTSTW18], [XZZPS19], [Set20] Univariate-sumcheckbased arguments [BCRSVS19]

[BCGGRS19], [ZXZS20], [CHMVW20], [COS20], [CFQR20], [BFHVXZ20] Sumchecks for tensor codes [Meir13] [RR20], [BCG20], [BCL20]

Useful properties:

• Linear-time prover [Thaler13,ZXZS20]

• Small space [CMT13] (can be implemented with streaming access)

 Strong soundness properties [CCHLRR18] (can make non-interactive without random oracles)

The sumcheck protocol is everywhere!

https://zkproof.org/2020/03/16/sum-checkprotocol/

Useful properties:

• Linear-time prover [Thaler13,ZXZS20]

• Small space [CMT13] (can be implemented with streaming access)

 Strong soundness properties [CCHLRR18] (can make non-interactive without random oracles)

Split-and-fold techniques: a separate body of work?

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Useful properties:

• Linear-time prover

• Streaming prover [BHRRS20], [BHRRS21] (can be implemented in small space)

[BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by Blockstream, and in Monero, Mimblewimble and more...

Aim, Fire: Bulletproofs Is a Crypto **Privacy Breakthrough**

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Useful properties:

• Linear-time prover

• Streaming prover [BHRRS20], [BHRRS21] (can be implemented in small space)

Results

...to a unified perspective

General goal: succinct arguments for commitment openings

A new notion : sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Example: Pedersen commitments $C = a_1 \cdot g_1 + \dots + a_n \cdot g_n$

$$\begin{array}{ll} H = \{-1,1\} \\ R = \mathbb{F}_p \end{array} \begin{array}{ll} \mathbb{M} = \mathbb{F}_p, \quad p_m(X_1, \dots, X_\ell) = \sum a_{i_1, \dots, i_\ell} X_1^{i_1} \dots X_\ell^{i_\ell} \\ \mathbb{K} = \mathbb{G}, \quad p_{ck}(X_1, \dots, X_\ell) = \sum g_{i_1, \dots, i_\ell} X_1^{i_1} \dots X_\ell^{i_\ell} \end{array} \begin{array}{ll} \mathbb{C} = \mathbb{G} \\ f: (a,g) \to a \cdot g_{i_1} \end{array}$$

Main result: sumcheck arguments

Theorem 1:

Let CM be a commitment scheme which is **sumcheck-friendly** and **invertible**. Given a commitment key ck and a commitment C, the sumcheck protocol applied to

$$p(X_1, \dots, X_\ell) = f\left(p_m(X_1, \dots, X_\ell), p_{ck}(X_1, \dots, X_\ell)\right) \in \mathbb{C}[X_1, \dots, X_\ell] \langle$$

(with one extra verifier check) is a succinct argument of knowledge for the claim $\exists m$ such that C = Com(ck, m), with

• completeness • soundness • communication $\ell \cdot \deg(p)$

Think $O(\log |m|)$

Sumcheck

works over

rings and

modules

Application: succinct arguments for NP

Application to R1CS over rings

R1CS problem over a ring R: given matrices $A, B, C \in \mathbb{R}^{n \times n}$, does there exist $z \in \mathbb{R}^n$ satisfying $Az \circ Bz = Cz$?

Bilinear module: a triple of modules (M_L, M_R, M_T) over the same ring with a bilinear map $e: M_L \times M_R \to M_T$. Has enough structure for Pedersen and Schnorr

Theorem 2: Let (M_L, M_R, M_T, e) be a "secure" bilinear module where M_L is a ring. Let $I \subseteq M_L$ be a suitable ideal. There is a ZK succinct argument of knowledge for R1CS with

R1CS Ring	Prover time	Verifier time	Proof size
M_L/I	O(n) ops	O(n) ops	$O(\log n)$ elems of M_T
M_L/I	O(n) ops in M_L, M_R, M_T	O(n) ops in M_L, M_R, M_T	$O(\log n)$ elems

Lattice-based succinct arguments for R1CS

Corollary: Let d be a power of 2, $p \ll q$ primes, $R_p \coloneqq \mathbb{Z}_p[X]/\langle X^d + 1 \rangle$ and similarly for R_q . Then assuming SIS is hard over R_q , there is a zero-knowledge succinct argument of knowledge for R1CS with

D $O(m)$ are in D D $O(m)$ are in D D $O(\log m)$ along of D	R1CS Ring	Prover time	Verifier time	Proof size
$R_p = O(n) \text{ ops in } R_p, R_q = O(n) \text{ ops in } R_p, R_q = O(\log n) \text{ elems of } R_q$	R_p	$O(n)$ ops in R_p , R_q	$O(n)$ ops in R_p , R_q	$O(\log n)$ elems of R_q

Concurrent work:

- [LA21] gives impossibility results and improvements for lattice POKs
- [ACK21] gives lattice-based succinct arguments for NP

Open questions

- Analyse the post-quantum security of sumcheck arguments
- Investigate new lattice instantiations [LA21] and concrete performance improvements
- Give instantiations of [BFS20,Lee21,BHHRS21] in our framework (or a generalization)

Techniques

Sumcheck arguments for commitment schemes

Completeness (part 1)

Lemma: If $\langle \underline{a}, \underline{G} \rangle = C$, then the verifier accepts with probability 1.

It suffices to show the following claim.

Claim:
$$\sum_{\underline{\omega} \in \{-1,1\}^{\log(n)}} p_{\underline{a}}(\underline{\omega}) p_{\underline{G}}(\underline{\omega}) = n \langle \underline{a}, \underline{G} \rangle$$
 (recall $p_{\underline{r}}(\underline{X}) = \sum_{i=1}^{n} r_{\underline{i}} X_1^{i_1} \cdots X_{\log(n)}^{i_{\log(n)}}$)

Completeness (part 2)

Claim:
$$\sum_{\underline{\omega} \in \{-1,1\}^{\log(n)}} p_{\underline{a}}(\underline{\omega}) p_{\underline{G}}(\underline{\omega}) = n \langle \underline{a}, \underline{G} \rangle$$
 (recall $p_{\underline{r}}(\underline{X}) = \sum_{i=1}^{n} r_{\underline{i}} X_{1}^{i_{1}} \cdots X_{\log(n)}^{i_{\log(n)}}$)

 $\sum_{\underline{\omega} \in \{-1,1\}^{\log(n)}} p_{\underline{a}}(\underline{\omega}) p_{\underline{G}}(\underline{\omega})$ cancels monomials of odd degree in any variable, e.g., $X_1 X_2^2 X_3^2$

Hence, $\sum_{\underline{\omega} \in \{-1,1\}^{\log(n)}} p_{\underline{a}}(\underline{\omega}) p_{\underline{G}}(\underline{\omega})$ receives contributions from monomials $X_1^{2i_1} \cdots X_{\log(n)}^{2i_{\log(n)}}$

Soundness (part 1)

What kind of soundness?

Knowledge soundness

There exists an extractor that given a suitable tree of *accepting transcripts* for a commitment key ck and commitment C, finds an opening m such that C = Com(ck, m).

Soundness (part 2)

Lemma: There exists an extractor that, given a 3-ary *tree of accepting transcripts* for key <u>*G*</u> and commitment *C*, finds an opening <u>*a*</u> such that $C = \langle \underline{a}, \underline{G} \rangle$.

Soundness (part 3)

Claim: If $\underline{\pi}^{(j)} \in \mathbb{F}^{2^{\ell-i}}$ is opening for $q_i(r_i^{(j)})$ for $j \in [3]$, we can find an opening of size $2^{\ell-i+1}$ for $q_{i-1}(r_{i-1})$.

In the protocol, $q_i(X) = \sum_{\underline{\omega} \in \{-1,1\}^{\ell-i}} p_{\underline{a}}(r_1, \dots, r_{i-1}, X, \underline{\omega}) p_{\underline{G}}(r_1, \dots, r_{i-1}, X, \underline{\omega}).$ So, $q_i(X)$ is **quadratic**.

3-ary tree contains **three** evaluations of $q_i(X)$ such that $\forall j \in [3], \quad q_i\left(r_i^{(j)}\right) = \langle \underline{\pi}^{(j)}, \underline{G}_i \rangle$ **Goal:** find $\underline{\pi}$ such that $q_i(X) = \langle \underline{\pi}(X), \underline{G}_{i-1} \rangle$ Verifier's check Then we can find $q_{i-1}(r_{i-1}) = \overline{q_i(1) + q_i(-1)} = \langle \underline{\pi}', \underline{G}_{i-1} \rangle$

Soundness (part 4)

Claim: If $\underline{\pi}^{(j)} \in \mathbb{F}^{2^{\ell-i}}$ is opening for $q_i(r_i^{(j)})$ for $j \in [3]$, we can find an opening of size $2^{\ell-i+1}$ for $q_{i-1}(r_{i-1})$.

 \underline{G}_k is the vector of coefficients of $p_{\underline{G}}(r_1, \dots, r_k, \underline{X})$

3-ary tree contains **three** evaluations of $q_i(X)$ such that $\forall j \in [3], \quad q_i\left(r_i^{(j)}\right) = \langle \underline{\pi}^{(j)}, \underline{G}_i \rangle$

$$= \left\langle \underline{\pi}^{(j)}, (\underline{G}_{i-1,L} + r_i^{(j)} \underline{G}_{i-1,R}) \right\rangle$$

$$= \left\langle \left(\underline{\pi}^{(j)}, r_i^{(j)} \underline{\pi}^{(j)} \right), \underline{G}_{i-1} \right\rangle \xrightarrow{\text{linear algebra}} q_i(X) = \langle \underline{\pi}(X), \underline{G}_{i-1} \rangle$$

Pedersen commitment is invertible.

Sumcheck arguments for commitment schemes

Today:

Sumcheck argument: Scalar-product commitment

Completeness and soundness

Lemma: The verifier accepts with probability 1.

$$C = \begin{pmatrix} \langle \underline{a}, \underline{G}_{1} \rangle \\ \langle \underline{b}, \underline{G}_{2} \rangle \\ \langle \underline{a}, \underline{b} \rangle U \end{pmatrix} \xrightarrow{} \begin{pmatrix} p_{\underline{a}}(\underline{X}) p_{\underline{G}_{1}}(\underline{X}) \\ p_{\underline{b}}(\underline{X}) p_{\underline{G}_{2}}(\underline{X}) \\ p_{\underline{a}}(\underline{X}) p_{\underline{b}}(\underline{X}) U \end{pmatrix}$$

Follows from completeness for Pedersen

Lemma: If the commitment scheme is binding, there exists an extractor that, given a 4-ary *tree of accepting transcripts for key* ($\underline{G}_1, \underline{G}_2$) and commitment C, finds an opening ($\underline{a}, \underline{b}$) such that $C = (\langle \underline{a}, \underline{G}_1 \rangle, \langle \underline{b}, \underline{G}_2 \rangle, \langle \underline{a}, \underline{b} \rangle U)$.

Similarly to Pedersen, we extract opening for each components. Using *a computational assumption and the larger tree*, we show that third component is the scalar-product $\langle \underline{a}, \underline{b} \rangle$.

Scalar-product commitment is *invertible*.

Sumcheck arguments for commitment schemes

Today:

Sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Sumcheck arguments for sumcheck-friendly commitments?

Sumcheck argument for sumcheck-friendly commitments

Common input:

- key *ck*
- commitment *C*

Claim: $\exists m \text{ s.t. } C = \sum_{\omega \in H^{\ell}} f(p_m(\underline{\omega}), p_{ck}(\underline{\omega}))$ **Opening:** *m* $\sum_{\omega \in H} q_1(\omega) = C?$ $\underline{r} \leftarrow \mathbb{F}^{\ell}$ msumcheck protocol for $\sum_{\omega \in H} q_{\ell}(\omega) = q_{\ell-1}(r_{\ell-1})?$ $\sum_{\underline{\omega} \in H^{\ell}} f\left(p_m(\underline{\omega}), p_{ck}(\underline{\omega})\right) = C \quad q_1, \dots, q_{\ell}$ r Ρ $p_m(\underline{r})$ **Consistency check: Communication:** sumcheck + $|p_m(\underline{r})|$ $f\left(p_m(\underline{r}), p_{ck}(\underline{r})\right) = q_\ell(r_\ell)?$ **Verifier computation:** computation of $p_{ck}(\underline{r})$ and f

Sumcheck argument: Sumcheck-friendly commitment

Completeness and soundness

Lemma: The verifier accepts with probability 1.

Follows directly from definition of sumcheck-friendly commitments

Lemma: If commitment scheme is invertible, there exists an extractor that, given a suitable *tree of accepting transcripts* for key *ck* and commitment *C*, finds an opening *m*.

Extractor works inductively as in Pedersen using invertibility in each layer

Sumcheck argument: Sumcheck-friendly commitment

Property that allows to climb up the tree from layer to layer.

Given polynomial
$$q_i(X)$$
 and "openings" $p^{(1)}(\underline{X}), \dots, p^{(K)}(\underline{X})$ such that $r_i^{(1)}, r_i^{(2)}, \dots, r_i^{(K)}$
 $\forall j \in [K] : q_i(r^{(j)}) = \sum_{\underline{\omega} \in H^{\ell-i}} f\left(p^{(j)}(\underline{\omega}), p_{ck}(r_1, \dots, r_i^{(j)}, \underline{\omega})\right)$ $p^{(1)}$ $p^{(2)}$ $p^{(K)}$

We can find polynomial p such that $\sum_{\omega \in H} q_i(\omega) = \sum_{\underline{\omega} \in H^{\ell-i+1}} f(p(\underline{\omega}), p_{ck}(r_1, \dots, r_{i-1}, \underline{\omega}))$ Extra variable X_i : p "bigger" than $p^{(j)}$

Invertible commitment schemes:

Pedersen commitments, scalar-product commitments, linear-function commitments

Sumcheck arguments for commitment schemes

Today:

From groups to rings

Everything so far extends to general \mathbb{F} -vector spaces, e.g., bilinear groups [BMMTV19].

 \mathbb{G}_{2}

Scalar-product commitments for bilinear groups: $(\langle \underline{a}, \underline{G}_1 \rangle, \langle \underline{b}, \underline{G}_2 \rangle, \langle \underline{a}, \underline{b} \rangle) \in \mathbb{G}_T^3$

Lattices and groups of unknown order?

Goal: an abstraction for mathematical structures where folding techniques can work

From groups to rings: bilinear modules

R-module *M*: generalization of vector space over rings

Bilinear module: (M_L, M_R, M_T, e) such that $\bullet M_L, M_R, M_T$ are *R*-modules • $e: M_L \times M_R \to M_T$ is *R*-bilinear

From groups to rings: sumcheck arguments

common input:

• key *ck* Special challenge set $\subseteq R!$ • commitment *C* (necessary even for claim: $\exists m \text{ with } \|\boldsymbol{m}\| \leq \boldsymbol{B} \text{ s.t. } C = \sum_{\omega \in H^{\ell}} f(p_m(\underline{\omega}), p_{ck}(\underline{\omega}))$ sumcheck protocol) **Opening:** *m* $\sum_{\omega \in H} q_1(\omega) = C?$ with $||m|| \leq B$ $\underline{r} \leftarrow \mathcal{C}^{\ell}$ m $\sum_{\omega \in H} q_{\ell}(\omega) = q_{\ell-1}(r_{\ell-1})?$ sumcheck protocol for $\sum_{\omega \in H^{\ell}} f\left(p_m(\underline{\omega}), p_{ck}(\underline{\omega})\right) = C$ q_1,\ldots,q_ℓ Ρ $p_m(\underline{r})$ consistency check: $f\left(p_m(\underline{r}), p_{ck}(\underline{r})\right) = v?$ Natural bound for evaluation of p_m on \mathcal{C}^ℓ $\|p_m(\underline{r})\| \leq B_*$?

From groups to rings: soundness

Challenges:

Linear algebra different over rings and modules
 Norm considerations arise

Lemma: If commitment scheme is invertible, there exists an extractor that, given a suitable *tree of accepting transcripts* for key *ck* and commitment *C*, finds a **relaxed** opening *m*.

Arithmetic over rings might cause slackness factors and increase in norm.

e.g., for Pedersen, the extracted relaxed opening \underline{a} for C and \underline{G} :

	$\boldsymbol{\xi}^{\ell} \cdot C = \langle \underline{a}, \underline{G} \rangle$ wit	:h ∥ <u>a</u> ∥ ≤ N ^ℓ	$\cdot B_*$ Tighter analysis in
Parameters for	r lattices:		
Ring	С	ξ	Ň
$\frac{\mathbb{Z}_q[X]}{< X^d + 1 >}$	$\{X^i: 0 \le i \le 2d - 1\}$	8	$O(d^7)$

From groups to rings: R1CS over rings

A remark about our R1CS result:

Without slackness!

Lemma (soundness): There exists an extractor that finds an R1CS witness.

e.g., for Pedersen, the extracted relaxed opening a for C and G: $\boldsymbol{\xi}^{\boldsymbol{\ell}} \cdot \boldsymbol{C} = \langle \boldsymbol{a}, \boldsymbol{G} \rangle$ with $||\boldsymbol{a}|| \leq N^{\boldsymbol{\ell}} \cdot \boldsymbol{B}$ **Issues:**

 $C = \langle \underline{a} / \boldsymbol{\xi}^{\ell}, \underline{G} \rangle \text{ with } \|\underline{a} / \boldsymbol{\xi}^{\ell}\| \leq B' \quad 2. \|\underline{a} / \boldsymbol{\xi}^{\ell}\| \text{ might not be small}$

1. ξ might not be invertible

Ideal I such that $\xi \pmod{I}$ is invertible, $||x \pmod{I}||$ small for all x $C = \langle a/\xi^{\ell} \pmod{I}, G \rangle$ with $\|\underline{a}/\xi^{\ell} \pmod{I}\| \leq B'$

Instantiations of bilinear modules

Assumption	Messages	Keys	Commitments	Ideal
BRA	small M_L	M_R	M _T	Ι
DLOG	\mathbb{F}_p	G	G	{0}
DPAIR[AFGHO10]	\mathbb{G}_1	\mathbb{G}_2	G _T	{0}
UO [BFS20]	small ${\mathbb Z}$	G	G	$n\mathbb{Z}$ for suitable small n
RSIS [Ajtai94]	small R_q	R_q^d	R_q^d	$n\mathbb{Z}$ for suitable small n

Conclusion

Summary of results

Theorem 1:

The sumcheck protocol applied to a sumcheck-friendly commitment scheme is a succinct argument of knowledge of commitment openings.

Theorem 2: Let (M_L, M_R, M_T) be a secure bilinear module with M_L a ring and $I \subseteq M_L$ an ideal. There is a ZK succinct argument of knowledge for R1CS with

R1CS	Prover and verifier	Proof size
Ring	time	
M_L/I	$O(n)$ ops M_L , M_R , M_T	$O(\log n)$ elems

Corollary: Let $p \ll q$ primes, $R_p \coloneqq \mathbb{Z}_p[X]/\langle X^d + 1 \rangle$ and similarly for R_q . Then assuming SIS is hard, there is a ZK succinct argument of knowledge for R1CS with

R1CS	Prover and verifier	Proof size
Ring	time	
R _p	$O(n)$ ops R_p, R_q	$O(\log n)$ elems R_q

Takeaways

- Many commitment schemes are sumcheck friendly
- We can recast many different cryptographic settings as bilinear modules
- In the paper: instantiations and polynomial commitment schemes

Thanks!

https://ia.cr/2021/333