Sumcheck Arguments and
their Applications

Jonathan Bootle (IBM Research — Zurich)
Alessandro Chiesa (UC Berkeley)
Katerina Sotiraki (UC Berkeley)
https://ia.cr/2021/333

https://ia.cr/2021/333

Succinct arguments
10
Witnhess Common (X)
input e"e
® ® @

Soundness: if the
witness is invalid, the
verifier rejects

v

A

Knowledge soundness:

> (later)
Completeness: if the ,
witness is valid, the . x
verifier accepts Succinctness: the messages are much

smaller than the witness

The sumcheck protocol [LFKN92]

Given a polynomial p(X4, ..., Xp) over a field F and a value u € F,
provethat }, _,.p(wyq,..,w;) =u

¢ € FlX:] | Checks that

< F _
Computes polynomials = ! %leH 1 Ezlg B u)
q;(X,) = P 5 V w,€H 42 (W2 = 41\
ZQEHf—iP(Tp--»Ti—1»Xi:wi+1»--»w£) qs € F[X,] :

i Lo, Zw{zEH qe (Wp) = qo—1(Tp-1)

) Tp < IF
Evaluates p to check that

communication P(re, - 72) = qe(re)
? - deg (p) elements of [F

£-deg(p)
|F|

Soundness: If Y, _.,p(wq, ..., wp) # uthenV accepts with probability at most

The sumcheck protocol is everywhe
— Sumcheck
Probabilistic proofs protocol

[BFL91,BFLS91,GKRO8]

|

Sumcheck-based Univariate-sumcheck- Sumchecks for

succinct arguments based arguments tensor codes
[Thaler13] [BCRSVS19] [Meirl3]
[CMT13], [VSBW13], [BCGGRS19], [ZXZS20], [RR20],
[W+17], [ZGKPP17], [CHMVW?20], [COS20], [BCG20],
[WTSTW18], [CFQR20], [BFHVXZ20] [BCL20]

[XZZPS19], [Set20]

el

Useful properties:

e Linear-time prover
[Thaler13,ZXZS20]

e Small space [CMT13]
(can be implemented with
streaming access)

e Strong soundness
properties [CCHLRR18]
(can make non-interactive
without random oracles)

The sumcheck protocol is everywhere!

Useful properties:

. — Sumcheck

Probabilistic proofs protocol « Linear-time prover
[BFL91,BFLS91,GKRO8] [Thaler13,2XZ520]

e Small space [CMT13]

(can be implemented with
streaming access)

e Strong soundness
properties [CCHLRR18]
(can make non-interactive

https://zkproof.org/2020/03/16/sum-checkprotocol/ without random oracles)

https://zkproof.org/2020/03/16/sum-checkprotocol/

Split-and-fold techniques:

a separate body of work?

Useful properties:

. BSplit-and-fold

Discrete-log arguments
[BBBPWM18], [PLS19], [BCCGP16] e Linear-time prover
[HKR19], [BHRRS20] l
e Streaming prover
Pairing-group Unknown-order-group Lattice [BHRRS20], [BHRRS21]
arguments arguments arguments (can be implemented in
small space)
[LMR19], [ZGKPP17], [BFS20], [BLNS20],
[XZZPS19] [BHRRS21] [ACK21], [LA20]

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Split-and-fold techniques:

a separate body of work?

Useful properties:
plit-and-fol

[BCCGP16]

Discrete-log arguments
[BBBPWM18], [PLS19],
[HKR19], [BHRRS20]

e Linear-time prover

e Streaming prover

[BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by [BHRRS20], [BHRRS21]

Blockstream, and in Monero, Mimblewimble and more... (can be implemented in
small space)

Aim, Fire: Bulletproofs Is a Crypto

Privacy Breakthrough

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Results

...to a unified perspective

Sumcheck
protocol

General goal:
succinct arguments for commitment openings

Claim: 3 m such that
C = Com(ck,m)

N

Common input:
e commitment C
« commitment key ck

Succinctness goal:
communication < |m|

Focus: commitments
with special structure

A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

combiner function f: M XK — C

Com(ck, m) = f(om(@y, ..., We), Pek (W1, ..., Wp))
J\ (1)1,...,(1)361‘1 J\ /\

VAN message key polynomial
commitment evaluation polynomial in K[X7, ..., Xp],
space Cis an points from in M[Xq, ..., Xp], K an R-module

R-module HC<S R,Raring | | M an R-module

Example: Pedersen commitments C = a; - g1 + -+ a, - gn

H={-11 M=F, pn(Xy,..X)=Xa, ;X X} C=G
R=Fp K=6G, puy...X)=Xg;, ,X2.xp filag)—a-g

Main result: sumcheck arguments

Theorem 1:

Let CM be a commitment scheme which is sumcheck-friendly and
invertible. Given a commitment key ck and a commitment C, the

sumcheck protocol applied to Sumchock
works over
p(X1, o, Xp) =[f (DK, oo, Xp), DX, 0, X)) € C[Xq, ..., XpI< ings and

(with one extra verifier check) is a succinct argument of knowledge for
the claim Im such that € = Com(ck, m), with

® completeness e soundness e communication £ - deg(p)
S~
Think O (log |m|)

Application: succinct

arguments for NP

Sumcheck
protocol

for bilinear modules

scalar-product
arguments @

Step 1: reduce NP
statements to
scalar products

Step 2: use efficient
subroutine for
scalar-products

13

Application to R1CS over rings

R1CS problem over a ring R: given matrices 4, B,C € R™*", does there
exist z € R" satisfying Az o Bz = Cz?

Bilinear module: a triple of modules (M, Mp, M) over the same ring

with a bilinearmap e : M; X Mp —» M.

Has enough structure for Pedersen and Schnorr

Theorem 2: Let (M, Mp, M7, e) be a “secure” bilinear module where M; is a
ring. Let I © M; be a suitable ideal. There is a ZK succinct argument of
knowledge for R1CS with

R1CS Ring | Prover time | Verifier time Proof size

M; /I O(n) ops O(n) ops O(logn) elems of My
in M;, Mp, M7 | in M;, Mg, M7

Lattice-based succinct arguments for R1CS

Corollary: Let d be a power of 2, p < q primes, R, := Z, [X]/(Xd + 1)
and similarly for R,. Then assuming SIS is hard over R, there is a zero-
knowledge succinct argument of knowledge for R1CS with

R1CS Ring Prover time Verifier time Proof size
R, O(m)opsinR,, R, | O(n) opsinRy, R, | 0O(logn) elems of R,

Concurrent work:
e [LA21] gives impossibility results and improvements for lattice POKs
* [ACK21] gives lattice-based succinct arguments for NP

Open guestions

* Analyse the post-quantum
security of sumcheck arguments

* Investigate new lattice
instantiations [LA21] and concrete
performance improvements

* Give instantiations of
[BFS20,Lee21,BHHRS21] in our
framework (or a generalization)

Technigues

Sumcheck arguments for commitment schemes

Today:

Pedersen
commitments

Many more details
and results in the
paper!

AN

Scalar-product
commitments

Sumcheck-friendly
commitments

Groups

Generalised
sumcheck-friendly
commitments

Rings and
modules

18

Sumcheck argument for Pedersen

Common input:

e commitment C € G “split-and-fold technique”
[BCCGT16] is equivalent!
o key G € G"

. (See App. A in the paper)
Claim:da € F"s.t. C = (a, G)

Opening:
a € F"*

q:(1) + q;(—=1) = nC?

1Q

r IFlog(n)
-«

» sumcheck protocol for

Qlog(n)(1) + Giogm)(—1) =
Chog(n)—l(rlog(n)—l)?

V

pa(@)ps(w) =nC .]
< w € {-1,1}l08(™) Lrees 108(7:)

1=

Pa (1)

Communication: 3log(n) G + (log(n) + 1) F C‘Z;‘Si“iy Che‘él:i ;
Verifier computation: O(n) G Pal Giog(n) (Mog(n))

Sumcheck argument: Pedersen

a r q,(1) + q,(-1) = nC?

=, sumcheck protocol for -

o(Dpela) =, el
seene s (Completeness (part 1)

Pa (E)

consistency check:
Pg([)pg(l) = qlog(n) (Tlug(n))?

Lemma: If (a, G) = C, then the verifier accepts with probability 1.

what the sumcheck né |
protocol checks hypothesis
Pa(@)pg(w) n{a, G)

we {—1,1}l08(m)
It suffices to show the following claim.

.] lo n
Claim: %, . ; jyiogen Pa(@)pg (@) = n(g, G) (recall p,(X) = X4 o 1cl>gg(§1)))

20

a

r

Sumcheck argument: Pedersen

r q,(1) + q,(-1) = nC?

sumcheck protocol for -

C QIog(n)(l) + QIDg(n)(_l) =

s dereene s (Completeness (part 2)

Pa (E)

consistency check:
Pg([)pg(l) = qlog(n) (Tlug(n))?

Claim: ZQE {—1,1}log(n) PQ(Q)PQ(Q) = n(Q’ Q) (recaII pf()—() = 7iﬂt=1 Tixlil llcl);g(gr)))

2 € {—1,1}108(0) pg(g)pg(g) cancels monomials of odd degree in any variable, e.g., X; X2X%

- 2i
Hence, Zw € (—1.1}log(m) pg(g)pg(g) receives contributions from monomials Xlzl1 .. Xlogzi()")
i1, e itog(ny € {0,1} pa(X) ps(X)
A

-

. N\ .
21 .] l] l
L. X198 ™ rise from @ Xt - X, 08™ L G Xt o8t

. 2i
Monomials of the form X, log(n) i1 log(n) i1 log(n)

21

Sumcheck argument: Pedersen

a r q,(1) + q,(-1) = nC?

=, sumcheck protocol for -

P QIog(n)(l.) + QIDg(n)(_l) =
r Z pﬂ(g)pﬁ(@) n C v QIog(n)fl(Tlog(n)fl)?

—— wE {_1,1}log(n) .

Pa (E)

consistency check:
Pg([)pg(l) = qlog(n) (Tlug(n))?

What kind of soundness?

There exists an extractor that given a suitable tree of accepting transcripts for a

Soundness (part 1)

Knowledge soundness

commitment key ck and commitment C, finds an opening m such that C = Com(ck, m).

A

v

v

A

A 4

q1

yrl(z) 7”1(3)

&[] 4. [1?] @[

NN/

Y

message
m

22

Sumcheck argument: Pedersen

a r q,(1) + q,(-1) = nC?

=, sumcheck protocol for -

— QIog(n)(l.) + QIDg(n)(_l) =
e s Soundness (part 2)
wE{-1, e

Pa (E)

consistency check:
Pg([)pg(l) = QIug(n)(Tlug(n))?

Lemma: There exists an extractor that, given a 3-ary tree of accepting transcripts for
key G and commitment C, finds an opening a such that C = (g, Q).

————— —— —— — — —— — —— o — — — — — — — ——

1 opening of size 2'°2Y = 11 for nC with key G € G"

|
i

Round 1 | n/n
|
|

+1 ———————————————————————————

3i=1 openings of size 2'°5() =1 for g._ (1;_) with key G;_, € G2 5™
where G;_4 is the vector of coefficients of pg(rl, o, T, X). . . .

3'0e(M) =1 gpenings of size 2 for g,_, (1 1) with key G,_; € G?

3102(n) gpenings of size 1 for q,(r,) with key pc(r) € G

Sumcheck argument: Pedersen

a r q,(1) + q,(=1) = nC?
=, sumcheck protocol for - .

P (Ilog(n)(l.) + QIDg(n)(_l) =
E . { ;}]og(n) pﬂ(g)pﬁ (9) : C - qlog(n)il(rlog(n)il)? O d e (p 3)

Pa (E)

consistency check:
PE(I)DQ(E) = qlog(n) (rlug(n))?

Claim: If 1) € F2" " is opening for qi(ri(j)) for j € [3], we can find an opening
of size 27+ for g;_, (1;_1).

In the protocol, q;(X) = X ,¢_11ye-i Pa(r1, oo, i1, X, @)D (11, 0, Tim1, X,).
So, g;(X) is quadratic.

3-ary tree contains three evaluations of g;(X) such that
vj € [3], ql((1)) = (z, Gy)

Goal: find r such that g;(X) = (m(X),Gi=1)

Verifier’s check
Then we can find q;_1(r;_1) = q;(1) + q;(—1) = (), G;_1)

Sumcheck argument: Pedersen

a q,(1) + q,(=1) = nC?
| =, sumcheck protocol for .

pa(@)ps(w) =nc

—— wE {_1,1}log(n)

Pa (E)

QIog(n)(l) + QIDg(n)(_l) =
QIog(n)fl(Tlog(n)fl)?

A

consistency check:

Pa (i) Pc (1) = log(n) (Tlug(n)) ?

Claim: If z() € F2"

Soundness (part 4)

s opening for qi(ri(j)) for j € [3], we can find an opening

of size 2711 for q;_1(r;_1).

Gy is the vector of coefficients of ps (74, ..., 7%, X)

3-ary tree contains three evaluations of g;(X) such that
vield, a(n”)=({="6)

= <EU)» (Gi_1 .t G(])Qi—1,R)>

B N G) (i linear algebra 1t such that
=((z?r"2), 61a) " i (X) = ((X),

Pedersen commitment is invertible.

Gi—1)

25

Sumcheck arguments for commitment schemes

Today:

Scalar-product
commitments

Groups Rings and
. modules

26

Sumcheck argument for
scalar-product commitments

Common input:

° key (Ql: QZ) U) € Gzn+1

« commitment C € G3

Claim: 3(a, b) € F*" s.t. C = ({a, G,), (b, G>),{a, b)U)

Opening: q.(1) + q;(=1) = nC?

an log(n)
(@ BHIEl (a,b) N sumcheck protocol for L ¥
pﬂ(g)p& (Q) qlog(n)(l) + Qlog(n) (_1) =
r z pp(w)pg, (w) |=ncC Qog(n)-1(Tog(n)-1)?
_ 1 N d1, > Qlog(n)
P 0 111 \py (w)py ()0 » Y

Pa (1), pp(T) Consistency check:

>

. . pa(T)pg, (7)
Communication: succinct _ q{)(n))?

" N py(r)pe, ()
Verifier computation: linear pa(1)pp (1)U

Sumcheck argument:
Scalar-product commitment

Completeness and soundness

Lemma: The verifier accepts with probability 1.

@ G ./ PaX)pg, (X)
C = (l; 52> | Pp(X)pg,(X) | Follows from completeness for Pedersen
(Ql, IQ)U > Pg()_()PQ()_()U

Lemma: If the commitment scheme is binding, there exists an extractor that, given a 4-ary
tree of accepting transcripts for key (G, G,) and commitment C, finds an opening (a, b)

suchthat € = ({a,G1), (b, G,), (a, b)V).

Similarly to Pedersen, we extract opening for each components. Using a computational
assumption and the larger tree, we show that third component is the scalar-product {(a, b).

Scalar-product commitment is invertible.

28

Sumcheck arguments for commitment schemes

Today:

i

Sumcheck-friendly
commitments

Groups

29

Sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

combiner functionf : M XK — C

Com(ck, m) = f(om(@y, ..., We), Pek (W1, ..., Wp))
J\ W1, WpEH J\ /\

N message key polynomial
commitment evaluation polynomial in K[X4, ..., Xp],
space Cis an points from in M[X, ..., Xp], K an R-module

R-module H < R,Raring | | M an R-module

Sumcheck arguments for sumcheck-friendly commitments?

Opening: m

Sumcheck argument for
sumcheck-friendly commitments

m

Common input:
e key ck
e cOmmitment C

Claim: 3mst.C =Y ¢ yo f(Pm (@), pex (@)

re F

r

> sumcheck protocol for P

ZQEH{)f (pm(ﬁ)'pck(ﬁ)) =C d1, -, qp

>

Pm (1)

Communication: sumcheck + |p,,, ()|
Verifier computation: computation of p_ (ﬁ) and f

ZwEH (h(w) = (?

Yowen 9e(w) = qp_1(1p-1)?

V

Consistency check:
f (Pm(0) ere(r)) = qe(re)?

Sumcheck argument:
Sumcheck-friendly commitment

Completeness and soundness

Lemma: The verifier accepts with probability 1.

Follows directly from definition of sumcheck-friendly commitments

Lemma: If commitment scheme is invertible, there exists an extractor that, given a
suitable tree of accepting transcripts for key ck and commitment C, finds an opening m.

Extractor works inductively as in Pedersen using invertibility in each layer

Sumcheck argument:
Sumcheck-friendly commitment

K-Invertibility

Property that allows to climb up the tree from layer to layer.

qdi
7,,.(1) 2) T.(K)
Given polynomial g;(X) and “openings” pM(X), ..., p®(X) such that 1 7| N
vj € [K]: qi(rD) = ¥ epe-i f (PP @), pere(ry, 50, @) D @ H®

We can find polynomial p such that ¥oep @i (0) = X cye-is1 f@(@), Pere (11, v, Tim1, @)

Extra variable X;: p “bigger” than p{)

Invertible commitment schemes:

Pedersen commitments, scalar-product commitments, linear-function commitments
33

Sumcheck arguments for commitment schemes

Today:

AN A

Generalised
sumcheck-friendly
commitments

Rings and
modules

34

From groups to rings

Everything so far extends to general [F-vector spaces, e.g., bilinear groups [BMMTV19].

Scalar-product commitments for bilinear groups: ({a, G,), (b, G,),{a, b)) € G;
N>
Gy G
Lattices and groups of unknown order?

Goal: an abstraction for mathematical structures where folding techniques can work

35

From groups to rings:
bilinear modules

R-module M: generalization of vector space over rings

Bilinear module: (M;, Mg, M, e) such that e M;, Mp, M; are R-modules
ee: M; X Mp —» My is R-bilinear

Messages Keys Commitments Assumption
small M; Mp My Bilinear Relation Assumption
_—
L
Can define polynomials over ‘Multiply’ message and key elements using e

message and key spaces —\/
% Hard to find small a

Pedersen example: C =a,G; + -+ a,G, ={(a,G such that (a,G) = 0

Add the pieces together Norm checks: only “short” elements are valid messages

e.g., for ring-SIS

Opening: m
with |lm|| < B

From groups to rings:
sumcheck arguments

common input:

e key ck

e coOmmitment C

claim: 3m with ||m|| < Bst. C = ch c f (P (@), Per (@)

m re C?

> sumcheck protocol for —
T Yyentf (Pn(@)pa(w))=C b

Pm (1)

Natural bound for
evaluation of p,, on C*

Special challenge set € R!

(necessary even for
sumcheck protocol)

WEH CI1(C‘)) = C?

Yowen 9e(w) = qp_1(1p-1)?

V

consistency check:

f (pm(f)'pck(f)) = v?

Hpm(MI < B2

From groups to rings:
soundness

Challenges:
1. Linear algebra different over rings and modules
2. Norm considerations arise

Lemma: If commitment scheme is invertible, there exists an extractor that, given a suitable
tree of accepting transcripts for key ck and commitment C, finds a relaxed opening m.

Arithmetic over rings might cause slackness factors and increase in norm.
e.g., for Pedersen, the extracted relaxed opening a for C and G:

Ef -0 = (Qi Q) with |[a]l < N* - B, | Tighter analysis in
Parameters for lattices: [LA21], [ACK21]
Ring C 4 - N
ZqlX] i . .
0<i< —
SRR (X0<i<2d-1} 8 0(d")

From groups to rings:
R1CS over rings

i |
A remark about our R1CS result: Without slackness!

Lemma (soundness): There exists an extractor that finds an R1CS witness.

e.g., for Pedersen, the extracted relaxed opening a for C and G:
§'-C = (a,G)with |lall < N*- B

‘ Issues:
y _ , | 1. ¢ might not be invertible
C = (Q/E ;Q) with ||C_l/€ ” <B 2. “g/€€” might not be small

Ideal I such that & (mod I) is invertible, ||x (mod I)|| small for all x
C = (a/&*(mod I),G) with ||a/&*(mod D|| < B’

39

Instantiations of bilinear modules

Assumption Messages | Keys | Commitments |deal
BRA small M; | Mp My I
DLOG [F, G G {0}
DPAIR[AFGHO10] G4 G, Gt {0}
UO [BFS20] small Z G G nZ for suitable small n
RSIS [Ajtaio4] smallR; | RY R4 nZ for suitable smalln

40

Conclusion

Summary of results

Theorem 1:

The sumcheck protocol applied to a sumcheck-friendly commitment scheme
is a succinct argument of knowledge of commitment openings.

Theorem 2: Let (M, Mp, M7) be a
secure bilinear module with M; a
ring and I € M; an ideal. Thereis a

ZK succinct argument of knowledge
for R1CS with

R1CS Prover and verifier Proof size
Ring time
M; /I | O(n) ops M;, Mg, My | O(logn) elems

Corollary: Let p K< g primes,
R, =17, [X]/(Xd + 1) and similarly
for R,. Then assuming SIS is hard,

there is a ZK succinct argument of
knowledge for R1CS with

p

R1CS | Prover and verifier Proof size
Ring time
R O(n)opsR,,R; | O(logn) elems R,

Takeaways

* Many commitment schemes are
sumcheck friendly

* We can recast many different
cryptographic settings as bilinear modules

* In the paper: instantiations and
polynomial commitment schemes

43

Thanks!

Sumcheck
protocol

https://ia.cr/2021/333

44

https://ia.cr/2021/333

